Nitrite-driven anaerobic ethane oxidation

被引:1
|
作者
Dang, Cheng-Cheng [1 ]
Jin, Yin -Zhu [1 ]
Tan, Xin [1 ]
Nie, Wen -Bo [2 ]
Lu, Yang [3 ]
Liu, Bing-Feng [1 ]
Xing, De-Feng [1 ]
Ren, Nan-Qi [1 ]
Xie, Guo-Jun [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
[2] Chongqing Univ, Coll Environm & Ecol, Minist Educ, Key Lab Three Gorges Reservoir Reg Ecoenvironm, Chongqing 400044, Peoples R China
[3] Queensland Univ Technol, Fac Engn, Sch Civil & Environm Engn, Water Innovat & Smart Environm Lab, Brisbane, Qld 4001, Australia
来源
ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY | 2024年 / 21卷
关键词
Anaerobic ethane oxidation; Denitrification; Microbial culture; Fumarate addition pathway; Greenhouse gas; MICROBIOLOGY; GEOCHEMISTRY; HYDROCARBONS; EMISSIONS; NITROGEN; PROPANE;
D O I
10.1016/j.ese.2024.100438
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ethane, the second most abundant gaseous hydrocarbon in vast anoxic environments, is an overlooked greenhouse gas. Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and nitrate. However, despite nitrite being a more thermodynamically feasible electron acceptor than sulfate or nitrate, little is known about nitrite -driven anaerobic ethane oxidation. In this study, a microbial culture capable of nitrite -driven anaerobic ethane oxidation was enriched through the long-term operation of a nitrite -and -ethane -fed bioreactor. During continuous operation, the nitrite removal rate and the theoretical ethane oxidation rate remained stable at approximately 25.0 mg NO 2 e N L - 1 d - 1 and 11.48 mg C 2 H 6 L - 1 d - 1 , respectively. Batch tests demonstrated that ethane is essential for nitrite removal in this microbial culture. Metabolic function analysis revealed that a species affiliated with a novel genus within the family Rhodocyclaceae, designated as ' Candidatus Alkanivoras nitrosoreducens', may perform the nitrite -driven anaerobic ethane oxidation. In the proposed metabolic model, despite the absence of known genes for ethane conversion to ethyl-succinate and succinate-CoA ligase, ' Ca . A. nitrosoreducens' encodes a prospective fumarate addition pathway for anaerobic ethane oxidation and a complete denitrification pathway for nitrite reduction to nitrogen. These findings advance our understanding of nitrite -driven anaerobic ethane oxidation, highlighting the previously overlooked impact of anaerobic ethane oxidation in natural ecosystems. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Nitrite-driven anaerobic methane oxidation by oxygenic bacteria
    Katharina F. Ettwig
    Margaret K. Butler
    Denis Le Paslier
    Eric Pelletier
    Sophie Mangenot
    Marcel M. M. Kuypers
    Frank Schreiber
    Bas E. Dutilh
    Johannes Zedelius
    Dirk de Beer
    Jolein Gloerich
    Hans J. C. T. Wessels
    Theo van Alen
    Francisca Luesken
    Ming L. Wu
    Katinka T. van de Pas-Schoonen
    Huub J. M. Op den Camp
    Eva M. Janssen-Megens
    Kees-Jan Francoijs
    Henk Stunnenberg
    Jean Weissenbach
    Mike S. M. Jetten
    Marc Strous
    Nature, 2010, 464 : 543 - 548
  • [2] Nitrite-driven anaerobic methane oxidation by oxygenic bacteria
    Ettwig, Katharina F.
    Butler, Margaret K.
    Le Paslier, Denis
    Pelletier, Eric
    Mangenot, Sophie
    Kuypers, Marcel M. M.
    Schreiber, Frank
    Dutilh, Bas E.
    Zedelius, Johannes
    de Beer, Dirk
    Gloerich, Jolein
    Wessels, Hans J. C. T.
    van Alen, Theo
    Luesken, Francisca
    Wu, Ming L.
    van de Pas-Schoonen, Katinka T.
    den Camp, Huub J. M. Op
    Janssen-Megens, Eva M.
    Francoijs, Kees-Jan
    Stunnenberg, Henk
    Weissenbach, Jean
    Jetten, Mike S. M.
    Strous, Marc
    NATURE, 2010, 464 (7288) : 543 - +
  • [3] Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria
    Maria Stoimenova
    Abir U. Igamberdiev
    Kapuganti Jagadis Gupta
    Robert D. Hill
    Planta, 2007, 226 : 465 - 474
  • [4] Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria
    Stoimenova, Maria
    Igamberdiev, Abir U.
    Gupta, Kapuganti Jagadis
    Hill, Robert D.
    PLANTA, 2007, 226 (02) : 465 - 474
  • [5] Vertical and temporal variations in activity, abundance, and composition of nitrite-driven anaerobic methanotrophs in a paddy field
    Geng, Caiyu
    Shen, Lidong
    Ren, Bingjie
    Huang, Hechen
    Jin, Jinghao
    Yang, Wangting
    Agathokleous, Evgenios
    Liu, Jiaqi
    Yang, Yuling
    Bai, Yanan
    Song, Yuzhi
    APPLIED SOIL ECOLOGY, 2024, 197
  • [6] Nitrate-driven anaerobic oxidation of ethane and butane by bacteria
    Wu, Mengxiong
    Li, Jie
    Lai, Chun-Yu
    Leu, Andy O.
    Sun, Shengjie
    Gu, Rui
    Erler, Dirk, V
    Liu, Lian
    Li, Lin
    Tyson, Gene W.
    Yuan, Zhiguo
    Mcilroy, Simon J.
    Guo, Jianhua
    ISME JOURNAL, 2024, 18 (01):
  • [7] Nitrite-driven abiotic transformation of sulfonamide micropollutants during freezing process
    Sun, Faqian
    Xiao, Yeyuan
    Wu, Dan
    Zhu, Wenyu
    Zhou, Yan
    CHEMICAL ENGINEERING JOURNAL, 2017, 327 : 1128 - 1134
  • [8] Variations of activity and community structure of nitrite-driven anaerobic methanotrophs in soils between native and invasive species in China's coastal wetlands
    Liu, Jiaqi
    Wang, Weiqi
    Shen, Lidong
    Bai, Yanan
    Yang, Wangting
    Yang, Yuling
    Xu, Jiangbing
    Tian, Maohui
    Liu, Xin
    Jin, Jinghao
    Song, Yuzhi
    EUROPEAN JOURNAL OF SOIL BIOLOGY, 2024, 120
  • [9] The influence of methyl nitrite on the oxidation of methane and ethane
    Gimmelman, GA
    Neumann, MB
    ACTA PHYSICOCHIMICA URSS, 1937, 7 (02): : 221 - 246
  • [10] Evaluation of anaerobic ethane oxidation capability of the denitrifying anaerobic methane oxidation culture
    Ding J.
    Fu L.
    Lu Y.
    Ding Z.
    Zeng R.J.
    Bioresource Technology Reports, 2020, 10