An accurate and efficient method for calculating surface waves in one-dimensional ideal and defective semi-infinite periodic structures

被引:0
作者
Yan, B. W. [1 ]
Tang, Z. F. [1 ]
Gao, Q. [1 ]
机构
[1] Dalian Univ Technol, Optimizat Sch Mech & Aerosp Engn, State Key Lab Struct Anal, Dalian 116024, Peoples R China
基金
国家重点研发计划;
关键词
Surface waves; Semi-infinite periodic structure; Defect; Wittrick-Williams algorithm; TRANSFER-MATRIX METHOD; FINITE-ELEMENT-METHOD; RAYLEIGH-WAVES; PROPAGATION; MODES; BULK;
D O I
10.1007/s00419-024-02656-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study presents an efficient and accurate method for calculating surface waves in one-dimensional ideal and defective semi-infinite periodic structures. The eigenequations for the surface waves in an ideal semi-infinite periodic structure and those eigenequations for the finite periodic structure within the bandgap are derived using the symplectic matrix. Based on these two eigenequations and the properties of the symplectic matrix, we show that the eigenfrequencies of the surface waves in an ideal semi-infinite periodic structure can be obtained using the eigenfrequencies within the bandgap of a finite periodic structure with different boundary conditions. The eigenfrequencies of the finite periodic structure can be calculated efficiently and accurately by the method combining the 2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>{N}$$\end{document} algorithm and Wittrick-Williams algorithm. The proposed method is also extended to solve the surface waves in defective semi-infinite periodic structures. The accuracy and efficiency of the proposed method are demonstrated using several numerical examples.
引用
收藏
页码:3027 / 3048
页数:22
相关论文
共 46 条
[1]   Bulk, surface, and interfacial waves in anisotropic linear elastic solids [J].
Barnett, DM .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (1-2) :45-54
[2]  
Biryukov S.V., 1995, Surface Acoustic Waves in Inhomogeneous Media, DOI DOI 10.1007/978-3-642-57767-3
[3]   Application of surface-wave tomography to mineral exploration: a case study from Siilinjarvi, Finland [J].
Da Col, Federico ;
Papadopoulou, Myrto ;
Koivisto, Emilia ;
Sito, Lukasz ;
Savolainen, Mikko ;
Socco, Laura Valentina .
GEOPHYSICAL PROSPECTING, 2020, 68 (01) :254-269
[4]   Surface acoustic waves on one-dimensional phononic crystals of general anisotropy: Existence considerations [J].
Darinskii, A. N. ;
Shuvalov, A. L. .
PHYSICAL REVIEW B, 2018, 98 (02)
[5]   RAYLEIGH-WAVES ON A SUPERLATTICE STRATIFIED NORMAL TO THE SURFACE [J].
DJAFARIROUHANI, B ;
MARADUDIN, AA ;
WALLIS, RF .
PHYSICAL REVIEW B, 1984, 29 (12) :6454-6462
[6]   Acoustic waves in solid and fluid layered materials [J].
El Boudouti, E. H. ;
Djafari-Rouhani, B. ;
Akjouj, A. ;
Dobrzynski, L. .
SURFACE SCIENCE REPORTS, 2009, 64 (11) :471-594
[7]   A precise numerical method for Rayleigh waves in a stratified half space [J].
Gao, Q. ;
Lin, J. H. ;
Zhong, W. X. ;
Howson, W. P. ;
Williams, F. W. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (06) :771-786
[8]   A precise method for solving wave propagation problems in layered anisotropic media [J].
Gao, Q ;
Zhong, WX ;
Howson, WP .
WAVE MOTION, 2004, 40 (03) :191-207
[9]   On the existence of surface waves in an elastic half-space with impedance boundary conditions [J].
Godoy, Eduardo ;
Duran, Mario ;
Nedelec, Jean-Claude .
WAVE MOTION, 2012, 49 (06) :585-594
[10]   Design analysis of Bloch surface wave based sensor for haemoglobin concentration measurement [J].
Goyal, Amit Kumar ;
Pal, Suchandan .
APPLIED NANOSCIENCE, 2020, 10 (09) :3639-3647