Metal-organic frameworks with dinuclear metal centers for synergistically boosting CO2 photoreduction

被引:3
作者
Wang, Hui-Feng [1 ,2 ]
Shi, Wen-Jie [2 ]
Yang, Yu-Xin [2 ]
Dong, Bao-Xia [1 ]
Lu, Tong-Bu [2 ]
Zhong, Di-Chang [2 ]
机构
[1] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Peoples R China
[2] Tianjin Univ Technol, Inst New Energy Mat & Low Carbon Technol, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
metal-organic frameworks; dinuclear metal centers; synergistic catalysis; CO2; reduction; photocatalysis; REDUCTION; EFFICIENT; CONVERSION; PHOTOCATALYST; BEARING;
D O I
10.1007/s11426-024-2108-2
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dinuclear metal synergistic catalysis (DMSC) has been proved powerful in boosting CO(2 )reduction, while this has not been achieved in heterogeneous catalysts with long-range order structures. In this study, we, by introduction of metal catalytic centers into an indium-based metal-organic framework (MOF), obtained a series of isostructural In-MOFs, including three MOFs with mononuclear metal catalytic center (M-In), three MOFs with dinuclear homometallic catalytic centers (MM-In), and three MOFs with dinuclear heterometallic catalytic centers (MM '-In, M/M ' = Co(II), Ni(II), Zn(II)). It was found that all these MOFs can serve as catalysts for photochemical CO2 reduction to CO. Compared with M-In, the catalytic activities of MM-In were obviously enhanced, and that of MM '-In was further significantly enhanced. For example, the CO yield of CoZn-In reaches a record value of 12,700 mu mol g(-1) h(-1), which is 4.0, 8.1, 9.4, and 18.6-fold higher than that of CoCo-In, ZnZn-In, Co-In, andZn-In, respectively. Similarly, the catalytic activities of CoNi-In and NiZn-In also show different fold increase than those of corresponding dinuclear homometallic and mononuclear metallic MOFs. The results of control experiments and theoretical calculation reveal that the higher catalytic activities of MM-In over M-In can be ascribed to the DMSC effect, and the higher catalytic activity of MM '-In over MM-In can be ascribed to the strengthened DMSC effect. The work reveals the relationship between DMSC effect and bimetal centers in CO2 reduction, which provides new insights into the DMSC and paves a new way to design highly active catalysts for photochemical CO(2 )reduction.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 50 条
  • [21] Relative Local Electron Density Tuning in Metal-Covalent Organic Frameworks for Boosting CO2 Photoreduction
    Zhang, Mi
    Huang, Pei
    Liao, Jia-Peng
    Yang, Ming-Yi
    Zhang, Shuai-Bing
    Liu, Yu-Fei
    Lu, Meng
    Li, Shun-Li
    Cai, Yue-Peng
    Lan, Ya-Qian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (44)
  • [22] Tandem ZnCo-porphyrin metal-organic frameworks for enhanced photoreduction of CO2
    Chen, Xuyang
    Cong, Meiyu
    Tang, Ming
    Liu, Jinxuan
    Chen, Shaoyun
    Gao, Yan
    INORGANIC CHEMISTRY FRONTIERS, 2022, 9 (17) : 4369 - 4375
  • [23] Metal-Organic Frameworks for Electrocatalytic CO2 Reduction into Formic Acid
    Xie, Wen-Jun
    Mulina, Olga M.
    Terent'ev, Alexander O.
    He, Liang-Nian
    CATALYSTS, 2023, 13 (07)
  • [24] Metal-Organic Frameworks and Their Derived Materials as Electrocatalysts and Photocatalysts for CO2 Reduction: Progress, Challenges, and Perspectives
    Zhang, Hanguang
    Li, Jiazhan
    Tan, Qiang
    Lu, Leilei
    Wang, Zhenbo
    Wu, Gang
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (69) : 18137 - 18157
  • [25] Rapid Formation of Metal-Organic Frameworks (MOFs) Based Nanocomposites in Microdroplets and Their Applications for CO2 Photoreduction
    He, Xiang
    Gan, Zhuoran
    Fisenko, Sergey
    Wang, Dawei
    El-Kaderi, Hani M.
    Wang, Wei-Ning
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (11) : 9688 - 9698
  • [26] Metal-Organic Frameworks for Electrocatalytic CO2 Reduction: From Catalytic Site Design to Microenvironment Modulation
    Zhang, Chengming
    Lin, Zhongyuan
    Jiao, Long
    Jiang, Hai-Long
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (50)
  • [27] Precise Regulation of the Coordination Environment of Single Co(II) Sites in a Metal-Organic Framework for Boosting CO2 Photoreduction
    Wang, Jingxue
    Sun, Kang
    Wang, Denan
    Niu, Xinwei
    Lin, Zhongyuan
    Wang, Siyuan
    Yang, Weijie
    Huang, Jier
    Jiang, Hai-Long
    ACS CATALYSIS, 2023, 13 (13) : 8760 - 8769
  • [28] Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis
    Gong, Yun-Nan
    Mei, Jian-Hua
    Liu, Jin-Wang
    Huang, Hai-Hua
    Zhang, Ji-Hong
    Li, Xiaokang
    Zhong, Di-Chang
    Lu, Tong-Bu
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 292
  • [29] Solvent Impedes CO2 Cycloaddition on Metal-Organic Frameworks
    Shao, Dan
    Shi, Jinbiao
    Zhang, Jianling
    Tan, Xiuniang
    Luo, Tian
    Cheng, Xiuyan
    Zhang, Bingxing
    Han, Buxing
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (04) : 386 - 389
  • [30] New Metal-Organic Frameworks for Chemical Fixation of CO2
    Nguyen, Phuong T. K.
    Nguyen, Huong T. D.
    Nguyen, Hung N.
    Trickett, Christopher A.
    Ton, Quang T.
    Gutierrez-Puebla, Enrique
    Angeles Monge, M.
    Cordova, Kyle E.
    Gandara, Felipe
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (01) : 733 - 744