The genus of a quotient of several types of numerical semigroups

被引:0
作者
Lee, Kyeongjun [1 ]
Nam, Hayan [2 ]
机构
[1] Yonsei Univ, Dept Math, Seoul, South Korea
[2] Duksung Womens Univ, Dept Math, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Numerical semigroups; quotient of numerical semigroups; genus;
D O I
10.1142/S1793042124500891
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finding the Frobenius number and the genus of any numerical semigroup S is a well-known open problem. Similarly, it has been studied how to express the Frobenius number and the genus of a quotient of a numerical semigroup. In this paper, by enumerating the Hilbert series of each type of numerical semigroup, we show an expression for the genus of a quotient of numerical semigroups generated by one of the following series: arithmetic progression, geometric series, and Pythagorean triple.
引用
收藏
页码:1809 / 1831
页数:23
相关论文
共 35 条
  • [1] On the genus of a quotient of a numerical semigroup
    Adeniran, Ayomikun
    Butler, Steve
    Defant, Colin
    Gao, Yibo
    Harris, Pamela E.
    Hettle, Cyrus
    Liang, Qingzhong
    Nam, Hayan
    Volk, Adam
    [J]. SEMIGROUP FORUM, 2019, 98 (03) : 690 - 700
  • [2] Numerical semigroups: Ap,ry sets and Hilbert series
    Alfonsin, Jorge L. Ramirez
    Rodseth, Oystein J.
    [J]. SEMIGROUP FORUM, 2009, 79 (02) : 323 - 340
  • [3] DECOUPLING, EXPONENTIAL SUMS AND THE RIEMANN ZETA FUNCTION
    Bourgain, J.
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (01) : 205 - 224
  • [4] Cogdell J, 2004, INT MATH RES NOTICES, V2004, P1561
  • [5] Cox D. A., 2014, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, V119
  • [6] Elizeche E. F., 2020, Integers, V20, P2
  • [7] THE GROWTH-RATE OF THE DEDEKIND ZETA-FUNCTION ON THE CRITICAL LINE
    HEATHBROWN, DR
    [J]. ACTA ARITHMETICA, 1988, 49 (04) : 323 - 339
  • [8] AVERAGE BEHAVIOUR OF HIGHER MOMENTS OF CUSP FORM COEFFICIENTS
    Hua, Guodong
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2022, 67 (01) : 69 - 76
  • [9] IWANIEC H., 1997, Graduate Studies in Mathematics, V17
  • [10] Iwaniec H., 2004, Analytic Number Theory