Transfer Generative Adversarial Networks (T-GAN)-based Terahertz Temporal Channel Modeling and Generating

被引:0
|
作者
Hu, Zhengdong [1 ]
Li, Yuanbo [1 ]
Han, Chong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
来源
PROCEEDINGS OF THE 2023 THE 7TH ACM WORKSHOP ON MILLIMETER-WAVE AND TERAHERTZ NETWORKS AND SENSING SYSTEMS, MMNETS 2023 | 2023年
关键词
Terahertz; channel modeling; transfer learning; generative adversarial networks;
D O I
10.1145/3615360.3625091
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Terahertz (THz) communications are a promising technology for 6G and beyond wireless systems, offering ultra-broad bandwidth and thus data rates of Terabit-per-second (Tbps). However, accurate channel modeling and characterization are fundamental for the design of THz communications. Relying on channel measurements, traditional statistical channel modeling methods suffer from low accuracy due to the assumed certain distributions and empirical parameters. Moreover, acquiring extensive channel measurement is time-consuming and expensive in the THz band. To address these challenges, a transfer generative adversarial network (T-GAN) based modeling method is proposed in the THz band, which exploits the advantage of GAN in modeling the complex distribution. Moreover, the transfer learning technique is introduced in T-GAN, which transfers the knowledge stored in a pre-trained model based on simulated data, to a new model based on a small amount of measured data. The simulation data is generated by the standard channel model from 3rd generation partnerships project (3GPP), which contains the knowledge that can be transferred to reduce the demand of measurement data and improve the accuracy of T-GAN. Experimental results reveal that the distribution of power delay profiles (PDPs) generated by the proposed T-GAN method shows good agreement with measurement. Moreover, T-GAN achieves good performance in channel modeling, with 9 dB improved root-mean-square error (RMSE) and higher Structure Similarity Index Measure (SSIM), compared with traditional 3GPP method.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [1] Generative Adversarial Networks Based Digital Twin Channel Modeling for Intelligent Communication Networks
    Zhang, Yuxin
    He, Ruisi
    Ai, Bo
    Yang, Mi
    Chen, Ruifeng
    Wang, Chenlong
    Zhang, Zhengyu
    Zhong, Zhangdui
    CHINA COMMUNICATIONS, 2023, 20 (08) : 32 - 43
  • [2] GAN-GLS: Generative Lyric Steganography Based on Generative Adversarial Networks
    Wang, Cuilin
    Liu, Yuling
    Tong, Yongju
    Wang, Jingwen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (01): : 1375 - 1390
  • [3] Channel Modeling Based On Quantum Generative Adversarial Network
    Gong, Zhairui
    He, Xinling
    Wan, Zhifan
    Li, Zetong
    Zhang, Xianchao
    Yu, Xutao
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 809 - 812
  • [4] Generating Synthetic Sidescan Sonar Snippets Using Transfer-Learning in Generative Adversarial Networks
    Steiniger, Yannik
    Kraus, Dieter
    Meisen, Tobias
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (03) : 1 - 17
  • [5] Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction
    Lv, Jun
    Li, Guangyuan
    Tong, Xiangrong
    Chen, Weibo
    Huang, Jiahao
    Wang, Chengyan
    Yang, Guang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [6] GAN-TL: Generative Adversarial Networks with Transfer Learning for MRI Reconstruction
    Yaqub, Muhammad
    Feng Jinchao
    Ahmed, Shahzad
    Arshid, Kaleem
    Bilal, Muhammad Atif
    Akhter, Muhammad Pervez
    Zia, Muhammad Sultan
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [7] CCST-GAN: Generative Adversarial Networks for Chinese Calligraphy Style Transfer
    Guo, Jiyuan
    Li, Jing
    Linghu, Kerui
    Gao, Bowen
    Xia, Zhaoqiang
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 62 - 69
  • [8] MA-GAN: the style transfer model based on multi-adaptive generative adversarial networks
    Zhao, Min
    Qian, XueZhong
    Song, Wei
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (03) : 33017
  • [9] Battery pack consistency modeling based on generative adversarial networks
    Fan, Xinyuan
    Zhang, Weige
    Sun, Bingxiang
    Zhang, Junwei
    He, Xitian
    ENERGY, 2022, 239
  • [10] Deep learning based generative adversarial networks for generating individual jumping load
    Xiong J.-C.
    Chen J.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2019, 32 (05): : 856 - 862