Data-driven Optimal Filtering for Linear Systems with Unknown Noise Covariances

被引:0
|
作者
Talebi, Shahriar [1 ,2 ]
Taghvaei, Amirhossein [1 ]
Mesbahi, Mehran [1 ]
机构
[1] Univ Washington, Seattle, WA 98105 USA
[2] Harvard Univ, Cambridge, MA 02138 USA
关键词
LEAST-SQUARES METHOD; IDENTIFICATION; CONVERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper examines learning the optimal filtering policy, known as the Kalman gain, for a linear system with unknown noise covariance matrices using noisy output data. The learning problem is formulated as a stochastic policy optimization problem, aiming to minimize the output prediction error. This formulation provides a direct bridge between data-driven optimal control and, its dual, optimal filtering. Our contributions are twofold. Firstly, we conduct a thorough convergence analysis of the stochastic gradient descent algorithm, adopted for the filtering problem, accounting for biased gradients and stability constraints. Secondly, we carefully leverage a combination of tools from linear system theory and high-dimensional statistics to derive bias-variance error bounds that scale logarithmically with problem dimension, and, in contrast to subspace methods, the length of output trajectories only affects the bias term.
引用
收藏
页数:40
相关论文
共 50 条
  • [31] Data-driven stabilization for linear sampled-data systems with unknown parameters: A pure data analytics perspective
    Yu, Luyang
    Ding, Jiayi
    Cui, Ying
    Liu, Yurong
    Wang, Yamin
    NEUROCOMPUTING, 2025, 634
  • [32] Data-Driven Optimal Control of Bilinear Systems
    Yuan, Zhenyi
    Cortes, Jorge
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 (2479-2484): : 2479 - 2484
  • [34] Data-driven optimal switching of switched systems
    Gan, Minggang
    Zhang, Chi
    Zhao, Jingang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (10): : 5193 - 5221
  • [35] Data-Driven Distributed Optimal Consensus Control for Unknown Multiagent Systems With Input-Delay
    Zhang, Huaipin
    Yue, Dong
    Dou, Chunxia
    Zhao, Wei
    Xie, Xiangpeng
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (06) : 2095 - 2105
  • [36] Data-driven optimal control with a relaxed linear program
    Martinelli, Andrea
    Gargiani, Matilde
    Lygeros, John
    AUTOMATICA, 2022, 136
  • [37] Data-Driven Attack Detection for Linear Systems
    Krishnan, Vishaal
    Pasqualetti, Fabio
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02): : 671 - 676
  • [38] Data-Driven Positive Stabilization of Linear Systems
    Shafai, Bahram
    Moradmand, Anahita
    Siami, Milad
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 1031 - 1036
  • [39] Data-Driven Abstractions for Verification of Linear Systems
    Coppola, Rudi
    Peruffo, Andrea
    Mazo Jr, Manuel
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2737 - 2742
  • [40] DATA-DRIVEN BALANCING OF LINEAR DYNAMICAL SYSTEMS
    Gosea, Ion Victor
    Gugercin, Serkan
    Beattie, Christopher
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01): : A554 - A582