Textile-based triboelectric nanogenerators integrated with 2D materials

被引:7
|
作者
Ali, Iftikhar [1 ]
Karim, Nazmul [1 ,2 ]
Afroj, Shaila [1 ,3 ]
机构
[1] Univ West England, Ctr Print Res CFPR, Bristol, England
[2] Nottingham Trent Univ, Nottingham Sch Art & Design NSAD, Shakespeare St, Nottingham NG1 4GG, Notts, England
[3] Univ Exeter, Dept Engn, Fac Environm Sci & Econ, Exeter EX4 4QF, England
关键词
2D materials; e-textiles; energy harvesting; smart materials; textile; wearable technology;
D O I
10.1002/eom2.12471
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The human body continuously generates ambient mechanical energy through diverse movements, such as walking and cycling, which can be harvested via various renewable energy harvesting mechanisms. Triboelectric Nanogenerator (TENG) stands out as one of the most promising emerging renewable energy harvesting technologies for wearable applications due to its ability to harness various forms of mechanical energies, including vibrations, pressure, and rotations, and convert them into electricity. However, their application is limited due to challenges in achieving performance, flexibility, low power consumption, and durability. Here, we present a robust and high-performance self-powered system integrated into cotton fabric by incorporating a textile-based triboelectric nanogenerator (T-TENG) based on 2D materials, addressing both energy harvesting and storage. The proposed system extracts significant ambient mechanical energy from human body movements and stores it in a textile supercapacitor (T-Supercap). The integration of 2D materials (graphene and MoS2) in fabrication enhances the performance of T-TENG significantly, as demonstrated by a record-high open-circuit voltage of 1068 V and a power density of 14.64 W/m(2) under a force of 22 N. The developed T-TENG in this study effectively powers 200+ LEDs and a miniature watch while also charging the T-Supercap with 4-5 N force for efficient miniature electronics operation. Integrated as a step counter within a sock, the T-TENG serves as a self-powered step counter sensor. This work establishes a promising platform for wearable electronic textiles, contributing significantly to the advancement of sustainable and autonomous self-powered wearable technologies.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Recent progress on textile-based triboelectric nanogenerators
    Paosangthong, Watcharapong
    Torah, Russel
    Beeby, Steve
    NANO ENERGY, 2019, 55 : 401 - 423
  • [2] Progress in textile-based triboelectric nanogenerators for smart fabrics
    Hu, Youfan
    Zheng, Zijian
    NANO ENERGY, 2019, 56 : 16 - 24
  • [3] Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems
    Huang, Peng
    Wen, Dan-Liang
    Qiu, Yu
    Yang, Ming-Hong
    Tu, Cheng
    Zhong, Hong-Sheng
    Zhang, Xiao-Sheng
    MICROMACHINES, 2021, 12 (02)
  • [4] Wearable nanocomposite textile-based piezoelectric and triboelectric nanogenerators: Progress and perspectives
    Bairagi, Satyaranjan
    Shahid-ul-Islam, Charchit
    Kumar, Charchit
    Babu, Aswathy
    Aliyana, Akshaya Kumar
    Stylios, George
    Pillai, Suresh C.
    Mulvihill, Daniel M.
    NANO ENERGY, 2023, 118
  • [5] Textile-Based Triboelectric Nanogenerators for Self-Powered Wearable Electronics
    Kwak, Sung Soo
    Yoon, Hong-Joon
    Kim, Sang-Woo
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (02)
  • [6] 2D materials integrated with polymers for sustainable energy harvesting through triboelectric nanogenerators
    Gangwar, Soumya
    Yadav, Prabhakar
    Rani, Alka
    Verma, Arpit
    Jha, S. K.
    Yadav, B. C.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2025, 312
  • [7] High-performance textile-based triboelectric nanogenerators with damage insensitivity and shape tailorability
    Yan, Jing
    Liu, Jingjing
    Li, Yafang
    Wang, Kaibo
    Kang, Weimin
    Yang, Guang
    NANO ENERGY, 2024, 126
  • [8] Ultra-Flexible and Large-Area Textile-Based Triboelectric Nanogenerators with a Sandpaper-Induced Surface Microstructure
    Song, Jian
    Gao, Libo
    Tao, Xiaoming
    Li, Lixiao
    MATERIALS, 2018, 11 (11)
  • [9] Wearable Triboelectric Nanogenerators Based on Polyamide Composites Doped with 2D Graphitic Carbon Nitride
    Xiao, Yana
    Xu, Bingang
    Bao, Qi
    Lam, Yintung
    POLYMERS, 2022, 14 (15)
  • [10] Dual Friction Mode Textile-Based Tire Cord Triboelectric Nanogenerator
    Seung, Wanchul
    Yoon, Hong-Joon
    Kim, Tae Yun
    Kang, Minki
    Kim, Jihye
    Kim, Han
    Kim, Seong Min
    Kim, Sang-Woo
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (39)