FedSL: A Communication-Efficient Federated Learning With Split Layer Aggregation

被引:9
作者
Zhang, Weishan [1 ]
Zhou, Tao [2 ]
Lu, Qinghua [3 ]
Yuan, Yong [4 ]
Tolba, Amr [5 ]
Said, Wael [6 ]
机构
[1] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao 266024, Shandong, Peoples R China
[2] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410012, Hunan, Peoples R China
[3] CSIRO, Data61, Sydney, NSW 2070, Australia
[4] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[5] King Saud Univ, Community Coll, Comp Sci Dept, Riyadh 385005, Saudi Arabia
[6] Zagazig Univ, Fac Comp & Informat, Comp Sci Dept, Zagazig 7120001, Egypt
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 09期
基金
中国国家自然科学基金;
关键词
Feature extraction; Federated learning; Costs; Adaptation models; Data models; Internet of Things; Computational modeling; Client selection; communication cost; federated learning (FL); split aggregation; INTERNET;
D O I
10.1109/JIOT.2024.3350241
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) can train a model collaboratively through multiple remote clients without sharing raw data. The challenge of federated learning (FL) is how to decrease network transmissions. This article aims to reduce network traffic by transmitting fewer neural network parameters. We first investigate similarities of different corresponding layers of convolutional neural network (CNN) models in FL, and find that there is a lot of redundant information in its model feature extractors. For this, we propose a communication-efficient federated aggregation algorithm named FedSL (Federated Split Layers) to reduce the communication overhead. Based on the number of global model layers, the FedSL divides client models into groups in the depth dimension. A Max-Min client selection strategy is employed to select participants for each layer. Each client only transfers partial parameters of those layers that are selected, which reduces the number of parameters. FedSL aggregates the global model in each group and concatenates the parameters of all groups according to the order of layers. The experimental results demonstrate that FedSL improves communication efficiency compared to the algorithms (e.g., FedAvg, FedProx, and MOON), decreasing 42% communication cost with VGG-style CNN and 70% with ResNet-9, while maintaining a similar model accuracy with baseline algorithms.
引用
收藏
页码:15587 / 15601
页数:15
相关论文
共 40 条
[1]   FedMCCS: Multicriteria Client Selection Model for Optimal IoT Federated Learning [J].
AbdulRahman, Sawsan ;
Tout, Hanine ;
Mourad, Azzam ;
Talhi, Chamseddine .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (06) :4723-4735
[2]  
Alistarh D, 2017, ADV NEUR IN, V30
[3]  
Bonawitz K., 2019, Machine Learning and Systems
[4]  
Chen Fei, 2021, Advances in Neural Information Processing Systems, V34
[5]  
Diao E., 2020, arXiv
[6]  
Durmus A. E., 2021, P INT C LEARN REPR, P1
[7]  
Gao L., 2022, arXiv, DOI DOI 10.48550/ARXIV.2203.11751
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]  
Hinton G., 2009, Handbook of Systemic Autoimmune Diseases
[10]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210