Background: Cervical cancer is a common cancer that seriously affects women's health globally. The key roles of long non-coding RNAs (lncRNAs) in the onset and development of cervical cancer have attracted much attention. Our study aims to uncover the roles of lncRNA EBLN3P and miR-29c-3p and the mechanisms by which EBLN3P and miR-29c-3p regulate malignancy in cervical cancer. Methods: Tumor and adjacent normal tissues were collected from cervical cancer patients, and the expression of EBLN3P and miR-29c-3p were analyzed via RT-qPCR. The capacities of proliferation, migration, and invasion were assessed using CCK-8, wound healing and transwell assays. The interaction among EBLN3P, miR-29c-3p and TAF15 was determined by luciferase, RNA immunoprecipitation and RNA pull-down assays, respectively. A subcutaneous tumor xenograft mouse model was established to evaluate the functional role of EBLN3P in vivo. Results: The interaction and reciprocal negative regulation between EBLN3P and miR-29c-3p were uncovered in cervical cancer cells. Likewise, EBLN3P and miR-29c-3p expression patterns in tumor tissues presented a negative association. EBLN3P knockdown weakened cell proliferation, migration and invasion, but these effects were abrogated by miR-29c-3p depletion. Mechanistically, ALKBH5 might impaired EBLN3P stability to reduce its expression. EBLN3P functioned as a competing endogenous RNA (ceRNA) for miR-29c-3p to relieve its suppression of RCC2. Besides, EBLN3P enhanced RCC2 mRNA stability via interacting with TAF15. Furthermore, silencing of EBLN3P repressed the tumor growth in mice. Conclusion: Altogether, lncRNA EBLN3P positively regulates RCC2 expression via competitively binding to miR29c-3p and interacting with TAF15, thereby boosting proliferation, migration, and invasion of cervical cancer cells.