Nambu-covariant many-body theory I: Perturbative approximations

被引:2
作者
Drissi, M. [1 ,2 ]
Rios, A. [2 ,3 ,4 ]
Barbieri, C. [2 ,5 ,6 ]
机构
[1] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
[2] Univ Surrey, Dept Phys, Guildford GU2 7XH, England
[3] Univ Barcelona UB, Dept Fis Quant & Astrofis FQA, Marti & Franques 1, E-08028 Barcelona, Spain
[4] Univ Barcelona IEEC UB, Inst Ciencies Cosmos ICCUB, Marti & Franques 1, E-08028 Barcelona, Spain
[5] Univ Milan, Dipartimento Fis Aldo Pontremoli, Via Celoria 16, I-20133 Milan, Italy
[6] Sez Milano, INFN, Via Celoria 16, I-20133 Milan, Italy
基金
英国科学技术设施理事会;
关键词
Quantum many-body theory; Symmetry-breaking; Perturbation theory; Superfluidity; SUPERFLUID SYSTEMS; ENTROPY PRINCIPLE; NEUTRON-STARS; RENORMALIZATION; GENERATION; DIAGRAMS; NUCLEI; MATTER; RULES;
D O I
10.1016/j.aop.2024.169729
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symmetry-breaking considerations play an important role in allowing reliable and accurate predictions of complex systems in quantum many-body simulations. The general theory perturbations in symmetry-breaking phases is nonetheless intrinsically more involved than in unbroken phase due to non-vanishing anomalous Green's functions or anomalous quasiparticle interactions. In the present paper, we develop a formulation of many-body theory at nonzero temperature which is explicitly covariant with respect to a group containing Bogoliubov transformations. Based on the concept of Nambu tensors, we derive a factorisation of standard Feynman diagrams that is valid for a general Hamiltonian. The resulting factorised amplitudes are indexed over the set of un-oriented Feynman diagrams with fully antisymmetric vertices. argue that, within this framework, the design of symmetry-breaking many-body approximations is simplified.
引用
收藏
页数:34
相关论文
共 50 条
[21]   Brillouin-Wigner and Feenberg perturbation methods in many-body theory [J].
Keiter, H ;
Kilic, S .
ANNALEN DER PHYSIK, 1996, 5 (07) :608-624
[22]   Bogoliubov many-body perturbation theory for open-shell nuclei [J].
Tichai, A. ;
Arthuis, P. ;
Duguet, T. ;
Hergert, H. ;
Soma, V. ;
Roth, R. .
PHYSICS LETTERS B, 2018, 786 :195-200
[23]   Modewise Johnson-Lindenstrauss embeddings for nuclear many-body theory [J].
Zare, A. ;
Wirth, R. ;
Haselby, C. A. ;
Hergert, H. ;
Iwen, M. .
EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (05)
[24]   Many-body theory of electronic transport in single-molecule heterojunctions [J].
Bergfield, J. P. ;
Stafford, C. A. .
PHYSICAL REVIEW B, 2009, 79 (24)
[25]   Monte Carlo explicitly correlated many-body Green's function theory [J].
Johnson, Cole M. ;
Doran, Alexander E. ;
Ten-no, Seiichiro L. ;
Hirata, So .
JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (17)
[26]   Automatic computing of the grand potential in finite temperature many-body perturbation theory [J].
Tag, M. A. ;
Mansour, M. E. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (11)
[27]   Many-body Propagator Theory with Three-Body Interactions: a Path to Exotic Open Shell Isotopes [J].
Barbieri, C. .
17TH INTERNATIONAL CONFERENCE ON RECENT PROGRESS IN MANY-BODY THEORIES (MBT17), 2014, 529
[28]   High-temperature superconductivity: A driving force for the revolution in quantum many-body theory [J].
Xiang, Tao .
ACTA PHYSICA SINICA, 2025, 74 (07)
[29]   Effective field theory with genuine many-body forces and tidal effects on neutron stars [J].
Razeira, M. ;
Hadjimichef, D. ;
Machado, M. V. T. ;
Kopp, F. ;
Volkmer, G. ;
Bodmann, B. ;
Degrazia, G. A. ;
Vasconcellos, C. A. Z. .
ASTRONOMISCHE NACHRICHTEN, 2019, 340 (1-3) :209-212
[30]   Many-body perturbation theory for the superconducting quantum dot: Fundamental role of the magnetic field [J].
Janis, Vaclav ;
Yan, Jiawei .
PHYSICAL REVIEW B, 2021, 103 (23)