Nambu-covariant many-body theory I: Perturbative approximations

被引:1
|
作者
Drissi, M. [1 ,2 ]
Rios, A. [2 ,3 ,4 ]
Barbieri, C. [2 ,5 ,6 ]
机构
[1] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
[2] Univ Surrey, Dept Phys, Guildford GU2 7XH, England
[3] Univ Barcelona UB, Dept Fis Quant & Astrofis FQA, Marti & Franques 1, E-08028 Barcelona, Spain
[4] Univ Barcelona IEEC UB, Inst Ciencies Cosmos ICCUB, Marti & Franques 1, E-08028 Barcelona, Spain
[5] Univ Milan, Dipartimento Fis Aldo Pontremoli, Via Celoria 16, I-20133 Milan, Italy
[6] Sez Milano, INFN, Via Celoria 16, I-20133 Milan, Italy
关键词
Quantum many-body theory; Symmetry-breaking; Perturbation theory; Superfluidity; SUPERFLUID SYSTEMS; ENTROPY PRINCIPLE; NEUTRON-STARS; RENORMALIZATION; GENERATION; DIAGRAMS; NUCLEI; MATTER; RULES;
D O I
10.1016/j.aop.2024.169729
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symmetry-breaking considerations play an important role in allowing reliable and accurate predictions of complex systems in quantum many-body simulations. The general theory perturbations in symmetry-breaking phases is nonetheless intrinsically more involved than in unbroken phase due to non-vanishing anomalous Green's functions or anomalous quasiparticle interactions. In the present paper, we develop a formulation of many-body theory at nonzero temperature which is explicitly covariant with respect to a group containing Bogoliubov transformations. Based on the concept of Nambu tensors, we derive a factorisation of standard Feynman diagrams that is valid for a general Hamiltonian. The resulting factorised amplitudes are indexed over the set of un-oriented Feynman diagrams with fully antisymmetric vertices. argue that, within this framework, the design of symmetry-breaking many-body approximations is simplified.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Nambu-covariant many-body theory II: Self-consistent approximations
    Drissi, M.
    Rios, A.
    Barbieri, C.
    ANNALS OF PHYSICS, 2024, 469
  • [2] Towards numerical implementation of the relativistically covariant many-body perturbation theory
    Hedendahl, Daniel
    Lindgren, Ingvar
    Salomonson, Sten
    CANADIAN JOURNAL OF PHYSICS, 2009, 87 (07) : 817 - 824
  • [3] ADG: Automated generation and evaluation of many-body diagrams I. Bogoliubov many-body perturbation theory
    Arthuis, P.
    Duguet, T.
    Tichai, A.
    Lasseri, R. -D.
    Ebran, J. -P.
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 240 : 202 - 227
  • [4] Importance truncation in non-perturbative many-body techniques
    Porro, A.
    Soma, V
    Tichai, A.
    Duguet, T.
    EUROPEAN PHYSICAL JOURNAL A, 2021, 57 (10)
  • [5] Symmetry reduction of tensor networks in many-body theory I. Automated symbolic evaluation of SU(2) algebra
    Tichai, A.
    Wirth, R.
    Ripoche, J.
    Duguet, T.
    EUROPEAN PHYSICAL JOURNAL A, 2020, 56 (10)
  • [6] Development of many-body perturbation theory
    Lindgren, Ingvar
    MOLECULAR PHYSICS, 2010, 108 (21-23) : 2853 - 2861
  • [7] Quantum many-body problems and perturbation theory
    A. V. Turbiner
    Physics of Atomic Nuclei, 2002, 65 : 1135 - 1143
  • [8] MANY-BODY THEORY OF THE ELECTROWEAK NUCLEAR RESPONSE
    Benhar, Omar
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2009, 18 (5-6) : 1282 - 1301
  • [9] Many-body theory and Energy Density Functionals
    Baldo, M.
    EUROPEAN PHYSICAL JOURNAL A, 2016, 52 (07)
  • [10] Effective field theory, three-loop perturbative expansion, and their experimental implications in graphene many-body effects
    Barnes, Edwin
    Hwang, E. H.
    Throckmorton, R. E.
    Das Sarma, S.
    PHYSICAL REVIEW B, 2014, 89 (23):