Interpolation Normalization for Contrast Domain Generalization

被引:4
|
作者
Wang, Mengzhu [1 ]
Chen, Junyang [1 ]
Wang, Huan [2 ]
Wu, Huisi [1 ]
Liu, Zhidan [1 ]
Zhang, Qin [1 ]
机构
[1] Shenzhen Univ, Shenzhen, Peoples R China
[2] Huazhong Agr Univ, Wuhan, Peoples R China
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023 | 2023年
关键词
Domain Generalization; Contrastive Learning; Batch Normalization; BATCH NORMALIZATION;
D O I
10.1145/3581783.3611841
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization refers to the challenge of training a model from various source domains that can generalize well to unseen target domains. Contrastive learning is a promising solution that aims to learn domain-invariant representations by utilizing rich semantic relations among sample pairs from different domains. One simple approach is to bring positive sample pairs from different domains closer, while pushing negative pairs further apart. However, in this paper, we find that directly applying contrastive-based methods is not effective in domain generalization. To overcome this limitation, we propose to leverage a novel contrastive learning approach that promotes class-discriminative and class-balanced features from source domains. Essentially, clusters of sample representations from the same category are encouraged to cluster, while those from different categories are spread out, thus enhancing the model's generalization capability. Furthermore, most existing contrastive learning methods use batch normalization, which may prevent the model from learning domain-invariant features. Inspired by recent research on universal representations for neural networks, we propose a simple emulation of this mechanism by utilizing batch normalization layers to distinguish visual classes and formulating a way to combine them for domain generalization tasks. Our experiments demonstrate a significant improvement in classification accuracy over state-of-the-art techniques on popular domain generalization benchmarks, including Digits-DG, PACS, Office-Home and DomainNet.
引用
收藏
页码:2936 / 2945
页数:10
相关论文
共 50 条
  • [1] Domain Generalization with Interpolation Robustness
    Palakkadavath, Ragja
    Thanh Nguyen-Tang
    Le, Hung
    Venkatesh, Svetha
    Gupta, Sunil
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [2] Style Normalization and Restitution for Domain Generalization and Adaptation
    Jin, Xin
    Lan, Cuiling
    Zeng, Wenjun
    Chen, Zhibo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3636 - 3651
  • [3] NormAUG: Normalization-Guided Augmentation for Domain Generalization
    Qi, Lei
    Yang, Hongpeng
    Shi, Yinghuan
    Geng, Xin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1419 - 1431
  • [4] Batch normalization emb e ddings for deep domain generalization
    Segu, Mattia
    Tonioni, Alessio
    Tombari, Federico
    PATTERN RECOGNITION, 2023, 135
  • [5] Collaborative learning with normalization augmentation for domain generalization in time series classification
    He, Qi-Qiao
    Gong, Xueyuan
    Si, Yain-Whar
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [6] Domain generalization in deep learning for contrast-enhanced imaging
    Sendra-Balcells, Carla
    Campello, Victor M.
    Martin-Isla, Carlos
    Vilades, David
    Descalzo, Martin L.
    Guala, Andrea
    Rodriguez-Palomares, Jose F.
    Lekadir, Karim
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [7] Domain-generalization human activity recognition model based on CSI instance normalization
    Wang Y.
    Xu J.
    Wang A.
    Xia H.
    Zhao C.
    Ji Y.
    Tongxin Xuebao/Journal on Communications, 2024, 45 (06): : 196 - 209
  • [8] Domain-aware triplet loss in domain generalization
    Guo, Kaiyu
    Lovell, Brian C.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 243
  • [9] Adaptive Batch Normalization for practical domain adaptation
    Li, Yanghao
    Wang, Naiyan
    Shi, Jianping
    Hou, Xiaodi
    Liu, Jiaying
    PATTERN RECOGNITION, 2018, 80 : 109 - 117
  • [10] Domain Generalization with Relaxed Instance Frequency-wise Normalization for Multi-device Acoustic Scene Classification
    Kim, Byeonggeun
    Yang, Seunghan
    Kim, Jangho
    Park, Hyunsin
    Lee, Juntae
    Chang, Simyung
    INTERSPEECH 2022, 2022, : 2393 - 2397