Detecting Unbalanced Network Traffic Intrusions With Deep Learning

被引:0
|
作者
Pavithra, S. [1 ]
Vikas, K. Venkata [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai 600127, Tamil Nadu, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Intrusion detection; Telecommunication traffic; Computer hacking; Cloud computing; Autonomous aerial vehicles; Random forests; Long short term memory; Cyberattack; Computer security; Ensemble learning; Network security; Cyber threats; cyber security; deep learning (DL); ensemble learning; intrusion detection; network security;
D O I
10.1109/ACCESS.2024.3405187
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The growth of cyber threats demands a robust and adaptive intrusion detection system (IDS) capable of effectively recognizing malicious activities from network traffic. However, the existing imbalance of class in network data possesses a significant challenge to traditional IDS. To overcome these challenges, this project proposes a novel hybrid Intrusion Detection System using machine learning algorithms, which includes XGBoost, Long Short-Term Memory (LSTM), Mini-VGGNet, and AlexNet, which is used to handle the unbalanced network traffic data. Furthermore, the Random Forest Regressor is used to ascertain the importance of features for enhancing detection accuracy and interpretability. Addressing the inherent class imbalance in network data is crucial for ensuring the IDS's effectiveness. The proposed system employs a combination of oversampling techniques for minority classes and under sampling techniques for majority classes during data preprocessing. This balanced representation of network traffic data helps prevent the IDS from being biased towards the majority class and improves its ability to detect rare or novel intrusions. The utilization of Random Forest Regressor for feature extraction serves a dual purpose. It helps identify the most relevant features within the network traffic data that contribute significantly to detecting intrusions. It enables the system to prioritize and focus on these important features during model training, thereby enhancing detection accuracy while reducing computational complexity. This research contributes to the ongoing efforts to mitigate cyber threats and safeguard critical network infrastructures.
引用
收藏
页码:74096 / 74107
页数:12
相关论文
共 50 条
  • [41] Deep Learning Approach for Detecting Malicious Activities Over Encrypted Secure Channels
    Yang, Jiwon
    Lim, Hyuk
    IEEE ACCESS, 2021, 9 : 39229 - 39244
  • [42] Cybersecurity in Deep Learning Techniques: Detecting Network Attacks
    Ghazal, Shatha Fawaz
    Mjlae, Salameh A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 221 - 230
  • [43] An Ensemble of Deep Recurrent Neural Networks for Detecting IoT Cyber Attacks Using Network Traffic
    Saharkhizan, Mahdis
    Azmoodeh, Amin
    Dehghantanha, Ali
    Choo, Kim-Kwang Raymond
    Parizi, Reza M.
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (09): : 8852 - 8859
  • [44] Machine Learning Techniques for Classifying Network Anomalies and Intrusions
    Li, Zhida
    Rios, Ana Laura Gonzalez
    Xu, Guangyu
    Trajkovic, Ljiljana
    2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,
  • [45] Cloud-based Real-time Network Intrusion Detection Using Deep Learning
    Parampottupadam, Santhosh
    Moldovann, Arghir-Nicolae
    2018 INTERNATIONAL CONFERENCE ON CYBER SECURITY AND PROTECTION OF DIGITAL SERVICES (CYBER SECURITY), 2018,
  • [46] Detecting Anomalous Network Traffic in IoT Networks
    Dang Hai Hoang
    Ha Duong Nguyen
    2019 21ST INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT): ICT FOR 4TH INDUSTRIAL REVOLUTION, 2019, : 1143 - 1152
  • [47] Improving Intrusion Detection for Imbalanced Network Traffic using Generative Deep Learning
    Alqarni, Amani A.
    El-Alfy, El-Sayed M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (04) : 959 - 967
  • [48] Research on Multiple Classification Detection for Network Traffic Anomaly Based on Deep Learning
    Tong, HaiZhou
    2022 6TH INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, ISCSIC, 2022, : 12 - 16
  • [49] Botnet-based IoT network traffic analysis using deep learning
    Singh, N. Joychandra
    Hoque, Nazrul
    Singh, Kh. Robindro
    Bhattacharyya, Dhruba K.
    SECURITY AND PRIVACY, 2024, 7 (02)
  • [50] A Survey of Network Traffic Visualization in Detecting Network Security Threats
    Liu, Xiaomei
    Sun, Yong
    Fang, Liang
    Liu, Junpeng
    Yu, Lingjing
    TRUSTWORTHY COMPUTING AND SERVICES (ISCTCS 2014), 2015, 520 : 91 - 98