Prognostic prediction model for esophageal cancer based on probability membrane systems

被引:0
作者
Jiang, Suxia [1 ]
Li, Housheng [1 ]
Wang, Yanfeng [1 ]
Sun, Junwei [1 ]
Liu, Huaiyang [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
Probability membrane systems; ROC analysis; KM survival analysis; Support vector machine; Back propagation neural network; XGBoost; ALGORITHM; SEARCH; CELL;
D O I
10.1007/s41965-024-00151-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Esophageal squamous cell carcinoma (ESCC) is a clinically common heterogeneous malignant tumor of the digestive system and also one of the diseases with a high incidence rate in China. Selecting appropriate treatment methods for patients is the key to improving patient survival rates and quality of life. Therefore, accurate prognostic assessment for esophageal cancer patients is crucial. In this paper, we propose a multi-factor esophageal cancer prognosis prediction model (PMS) based on probabilistic membrane systems. First, we use receiver operating characteristic(ROC) analysis and Kaplan-Meier (KM) survival analysis to screen out the key factors that affect the survival status of the samples. Then, based on these key factors and probabilistic membrane systems, we construct a conceptual model for esophageal cancer prognosis prediction. We define the corresponding membrane structure and object set according to the conceptual model, and design relevant evolution rules considering the characteristics of esophageal cancer progression. In particular, we use MeCoSim software to simulate the PMS model and compare the prediction results of the four stages of esophageal cancer with the actual results. The relative error between the simulation results and the actual results does not exceed +/- 10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 10\%$$\end{document}. To further demonstrate the effectiveness of the model, we compare PMS with other algorithms. Compared with traditional machine learning methods such as support vector machines (SVM), backpropagation neural networks (BP), and XGBoost, the PMS model has certain advantages. The accuracy of this model reached 92%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$92\%$$\end{document}, the recall rate reached 88%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$88\%$$\end{document}, the F1 score reached 0.88, and the AUC reached 0.91.
引用
收藏
页码:278 / 296
页数:19
相关论文
共 48 条
[1]  
Ayodele T.O., 2010, New Advances in Machine Learning, V3, P19
[2]   A Series-Based Deep Learning Approach to Lung Nodule Image Classification [J].
Balci, Mehmet Ali ;
Batrancea, Larissa M. ;
Akguller, Omer ;
Nichita, Anca .
CANCERS, 2023, 15 (03)
[3]   Minimal probabilistic P systems for modelling ecological systems [J].
Barbuti, Roberto ;
Bove, Pasquale ;
Milazzo, Paolo ;
Pardini, Giovanni .
THEORETICAL COMPUTER SCIENCE, 2015, 608 :36-56
[4]   Discrimination method of biomass slagging tendency based on particle swarm optimization deep neural network (DNN) [J].
Bi, Yingxin ;
Chen, Chunxiang ;
Huang, Xiaodong ;
Wang, Haokun ;
Wei, Guangsheng .
ENERGY, 2023, 262
[5]   A random forest guided tour [J].
Biau, Gerard ;
Scornet, Erwan .
TEST, 2016, 25 (02) :197-227
[6]  
Cardona M, 2009, LECT NOTES COMPUT SC, V5391, P137
[7]   Prognostic value of lymph node to primary tumor standardized uptake value ratio in unresectable esophageal cancer [J].
Chen, Po-Jui ;
Yap, Wing-Keen ;
Chang, Yu-Chuan ;
Tseng, Chen-Kan ;
Chao, Yin-Kai ;
Hsieh, Jason Chia-Hsun ;
Pai, Ping-Ching ;
Lee, Ching-Hsin ;
Yang, Chan-Keng ;
Ho, Albert Tsung-Ying ;
Hung, Tsung-Min .
BMC CANCER, 2020, 20 (01)
[8]  
Chen T., 2015, R PACKAGE VERSION 04, V1
[9]   The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification [J].
Chicco, Davide ;
Jurman, Giuseppe .
BIODATA MINING, 2023, 16 (01)
[10]  
Colomer M.A., 2011, MEMBRANE COMPUTING