RELAXED INERTIAL PROJECTIVE FORWARD-BACKWARD SPLITTING ALGORITHMS FOR REGULARIZED LEAST SQUARE PROBLEMS

被引:0
作者
Cholamjiak, Watcharaporn [1 ]
Dutta, Hemen [2 ]
机构
[1] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[2] Gauhati Univ, Dept Math, Gauhati 781014, India
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2024年 / 77卷 / 04期
关键词
inertial technique; projective method; regularized least square problem; forward-backward splitting algorithm; variational inclusion problems; SIGNAL RECOVERY; OPTIMIZATION; LASSO;
D O I
10.7546/CRABS.2024.04.03
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study presents flexible conditions of the inertial extrapolation parameter for easy implementation that is added to the algorithm in faster convergence. Modified inertial forward -backward splitting algorithms for solving variational inclusion problems are introduced to apply to solve the LASSO problem for image restoration and signal recovery, and the elastic net model for classification problem. Projection methods are used in the final step for narrowing down the search field, resulting in a better solution.
引用
收藏
页码:496 / 503
页数:8
相关论文
共 18 条
[1]   The Trimmed Lasso: Sparse Recovery Guarantees and Practical Optimization by the Generalized Soft-Min Penalty [J].
Amir, Tal ;
Basri, Ronen ;
Nadler, Boaz .
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (03) :900-929
[2]   Relaxed Forward-Backward Splitting Methods for Solving Variational Inclusions and Applications [J].
Cholamjiak, Prasit ;
Dang Van Hieu ;
Cho, Yeol Je .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
[3]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[4]   Tseng type methods for solving inclusion problems and its applications [J].
Gibali, Aviv ;
Duong Viet Thong .
CALCOLO, 2018, 55 (04)
[5]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501
[6]   PROJECTION METHOD WITH INERTIAL STEP FOR NONLINEAR EQUATIONS: APPLICATION TO SIGNAL RECOVERY [J].
Ibrahim, Abdulkarim Hassan ;
Kumam, Poom ;
Sun, Min ;
Chaipunya, Parin ;
Abubakar, Auwal Bala .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (01) :30-55
[7]  
Kankam K, 2019, THAI J MATH, V17, P607
[8]   Forward-Backward Splitting Methods for Accretive Operators in Banach Spaces [J].
Lopez, Genaro ;
Martin-Marquez, Victoria ;
Wang, Fenghui ;
Xu, Hong-Kun .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[9]   An Inertial Forward-Backward Algorithm for Monotone Inclusions [J].
Lorenz, Dirk A. ;
Pock, Thomas .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (02) :311-325
[10]   Iteratively reweighted two-stage LASSO for block-sparse signal recovery under finite-alphabet constraints [J].
Messai, Malek ;
Aissa-El-Bey, Abdeldjalil ;
Amis, Karine ;
Guilloud, Frederic .
SIGNAL PROCESSING, 2019, 157 :73-77