A Pesticide Spraying Mission Allocation and Path Planning With Multicopters

被引:1
|
作者
Huang, Jing [1 ,2 ]
Du, Baihui [3 ]
Zhang, Youmin [4 ]
Quan, Quan [5 ]
Wang, Ban [6 ]
Mu, Lingxia [1 ]
机构
[1] Xian Univ Technol, Dept Automat & Informat Engn, Xian 710048, Peoples R China
[2] Jiujiang Precis Test Technol Res Inst, Jiujiang 332000, Peoples R China
[3] China Elect Corp, Beijing 100081, Peoples R China
[4] Concordia Univ, Dept Mech Ind & Aerosp Engn, Montreal, PQ H3G 1M8, Canada
[5] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[6] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Spraying; Pesticides; Optimization; Task analysis; Resource management; Path planning; Genetic algorithms; Mission assignment; multicopters; multiple traveling salesman problem (mTSP); path planning; point cloud; precision spraying; TRAVELING SALESMAN PROBLEM; UNMANNED AERIAL VEHICLES; ALGORITHM; DEPOT; OPTIMIZATION; FORMULATIONS; TECHNOLOGIES; ASSIGNMENT; SEARCH; SOLVE;
D O I
10.1109/TAES.2024.3355028
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This article presents a mission allocation and path-planning solution for the pesticide spraying mission of dense trees in hilly terrains using cooperative multicopters. The problem is formulated as a single-depot single-end multiple traveling salesman problem (mTSP). Three different algorithms, namely classical mTSP algorithm, Grouping-TSP combined algorithm, and Grouping-TSP decoupled algorithm, are developed to solve the proposed mTSP. Simulation results indicate that the classical mTSP algorithm provides an evenly distributed task allocation while the Grouping-TSP combined algorithm delivers the optimal solution. In addition, the Grouping-TSP decoupled algorithm minimizes computational complexity. Both Grouping-TSP algorithms integrate a subregions segmentation process to guarantee collision avoidance between the multicopters.
引用
收藏
页码:2277 / 2291
页数:15
相关论文
共 50 条
  • [41] 3D Path Planning for Multiple UAVs for Maximum Information Collection
    Ergezer, Halit
    Leblebicioglu, Kemal
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2014, 73 (1-4) : 737 - 762
  • [42] A Robot Spraying Path Planning Method for the Digital Camouflage Pattern
    Zhang, GongTao
    Sha, JianJun
    Wang, XiangWei
    Lv, YongSheng
    Zhao, Hui
    Yan, ZhanTong
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 3470 - 3475
  • [43] Path planning on a cuboid using genetic algorithms
    Ugur, Aybars
    INFORMATION SCIENCES, 2008, 178 (16) : 3275 - 3287
  • [44] Door-Density-Aware Path Planning
    Vikram, Charan
    Mirihagalla, M. K. Dojitha M.
    Yeo, Matthew S. K.
    Zeng, Zimou
    Borusu, Charan Satya Chandra Sairam
    Muthugala, M. A. Viraj J.
    Elara, Mohan Rajesh
    IEEE ACCESS, 2024, 12 : 136880 - 136888
  • [45] Multidepot Drone Path Planning With Collision Avoidance
    Shen, Kun
    Shivgan, Rutuja
    Medina, Jorge
    Dong, Ziqian
    Rojas-Cessa, Roberto
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (17) : 16297 - 16307
  • [46] Path planning and obstacle avoidance for AUV: A review
    Cheng, Chunxi
    Sha, Qixin
    He, Bo
    Li, Guangliang
    OCEAN ENGINEERING, 2021, 235
  • [47] Diversity Maintenance for Efficient Robot Path Planning
    Curkovic, Petar
    Cehulic, Lovro
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [48] Mission planning based on path prediction for multiple UAVs
    Qi N.
    Sun X.
    Dong C.
    Yao W.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2016, 48 (04): : 32 - 36
  • [49] Optimal Path Planning Algorithm for Visiting Multiple Mission Points in Dynamic Environments
    Lee, Hohyeong
    Chang, Woohyuk
    Jang, Hwanchol
    JOURNAL OF THE KOREAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2019, 47 (05) : 379 - 387
  • [50] Research on UAV Path Planning Method Based on Improved HPO Algorithm in Multitask Environment
    Zu, Linan
    Wang, Zhipeng
    Liu, Cong
    Ge, Shuzhi Sam
    IEEE SENSORS JOURNAL, 2023, 23 (17) : 19881 - 19893