Dynamic minimisation of the commute time for a one-dimensional diffusion

被引:0
作者
Hernandez-Hernandez, Ma. Elena [1 ]
Jacka, Saul D. [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, England
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, England
关键词
Commute-time; Diffusion; Infinite-dimensional control problem; Stochastic control; Simulated tempering; RANDOM-WALKS;
D O I
10.1007/s10479-024-06067-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Motivated in part by a problem in simulated tempering (a form of Markov chain Monte Carlo) we seek to minimise, in a suitable sense, the time it takes a (regular) diffusion with instantaneous reflection at 0 and 1 to travel to 1 and then return to the origin (the so-called commute time from 0 to 1). Substantially extending results in a previous paper, we consider a dynamic version of this problem where the control mechanism is related to the diffusion's drift via the corresponding scale function. We are only able to choose the drift at each point at the time of first visiting that point and the drift is constrained on a set of the form [ 0 , & ell; ) boolean OR ( i , 1 ] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\ell )\cup (i,1]$$\end{document} . This leads to a type of stochastic control problem with infinite dimensional state.
引用
收藏
页数:19
相关论文
共 24 条
[2]   Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo [J].
Atchade, Yves F. ;
Roberts, Gareth O. ;
Rosenthal, Jeffrey S. .
STATISTICS AND COMPUTING, 2011, 21 (04) :555-568
[3]  
Barlow Martin T., 2017, RANDOM WALKS HEAT KE, V438, DOI DOI 10.1017/9781107415690
[4]  
Chandra A. K., 1989, Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, P574, DOI 10.1145/73007.73062
[5]  
Chandra AK, 1997, COMPUT COMPLEX, V6, P312
[6]   ON SOLUTIONS OF ONE-DIMENSIONAL STOCHASTIC DIFFERENTIAL-EQUATIONS WITHOUT DRIFT [J].
ENGELBERT, HJ ;
SCHMIDT, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 68 (03) :287-314
[7]  
Englebert H.J., 2000, PROBAB MATH STAT, V20, P343
[8]  
Ethie SN., 1986, Markov processes, Wiley Series in Probability and Mathematical Statistics
[9]   Hitting times, commute times, and cover times for random walks on random hypergraphs [J].
Helali, Amine ;
Loewe, Matthias .
STATISTICS & PROBABILITY LETTERS, 2019, 154
[10]  
Ito K., 1974, DIFFUSION PROCESSES