Synthetic data generation by diffusion models

被引:0
作者
Zhu, Jun [1 ,2 ]
机构
[1] Tsinghua Univ, BNRist Ctr, Tsinghua Bosch Joint ML Ctr, Dept Comp Sci & Technol, Beijing, Peoples R China
[2] Pazhou Lab, Huangpu, Peoples R China
关键词
D O I
10.1093/nsr/nwae276
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper provides a brief overview on diffusion models, which are extremely powerful on generating high-dimensional data, including images, 3D content, and videos, and provides insights for future work.
引用
收藏
页数:3
相关论文
共 20 条
[1]  
Bao F, 2024, Arxiv, DOI arXiv:2405.04233
[2]  
Bao Fan., INT C LEARNING REPRE
[3]  
Brooks Tim, 2024, Video generation models as world simulators
[4]  
Chen H., INT C MACHINE LEARNI
[5]  
Chen H., International Conference on Learning Representations, Kigali Rwanda, 1-5 May 2023
[6]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[7]  
Ho J., 2021, NEURIPS 2021 WORKSHO
[8]  
Ho J., 2020, ADV NEURAL INFORM PR, P6840
[9]  
Huang R., 2023, arXiv
[10]  
Lu C., 2024, Proceedings of the 36th International Conference on Neural Information Processing Systems, P5775