Design of Stabilizing Feedback Controllers for High-Order Nonholonomic Systems

被引:1
作者
Grushkovskaya, Victoria [1 ,2 ]
Zuyev, Alexander [2 ,3 ]
机构
[1] Univ Klagenfurt, Inst Math, A-9020 Klagenfurt Am Worthersee, Austria
[2] Natl Acad Sci Ukraine, Inst Appl Math & Mech, UA-84116 Sloviansk, Ukraine
[3] Max Planck Inst Dynam Complex Tech Syst, CSC Res Grp, D-39106 Magdeburg, Germany
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
关键词
Vectors; Control design; Trajectory; Time-varying systems; Mobile robots; Mathematics; Lyapunov methods; Lie brackets; nonholonomic systems; oscillating control; stabilization;
D O I
10.1109/LCSYS.2024.3406931
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents a novel stabilizing control design strategy for driftless control-affine systems with an arbitrary degree of nonholonomy. The proposed approach combines a time-varying control component that generates motion in the direction of prescribed Lie brackets with a state-dependent component, ensuring the stability of the equilibrium. The coefficients of the state-dependent component are derived in such a way that the trajectories of the resulting closed-loop system approximate the gradient flow of a Lyapunov-like function. In the case of a quadratic Lyapunov function, this guarantees the exponential stability of the equilibrium. The usability of this approach is demonstrated on general two-input systems having the fourth degree of nonholonomy. The proposed stabilization scheme is illustrated with several examples.
引用
收藏
页码:988 / 993
页数:6
相关论文
共 32 条
[1]  
Aloisi D, 2022, 2022 EUROPEAN CONTROL CONFERENCE (ECC), P1055, DOI 10.23919/ECC55457.2022.9838045
[2]  
[Anonymous], 2013, SIAM J. Control Optim., V51, P2280
[3]   Discontinuous control of nonholonomic systems [J].
Astolfi, A .
SYSTEMS & CONTROL LETTERS, 1996, 27 (01) :37-45
[4]  
Belabbas MA, 2017, P AMER CONTR CONF, P4189, DOI 10.23919/ACC.2017.7963599
[5]  
Brockett R.W, 1983, PROG MATH, P181
[6]  
Cao K., 2023, P 49 ANN C IEEE IND, P1
[7]   Asymptotic controllability implies feedback stabilization [J].
Clarke, FH ;
Ledyaev, YS ;
Sontag, ED ;
Subbotin, AI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) :1394-1407
[8]   GLOBAL ASYMPTOTIC STABILIZATION FOR CONTROLLABLE SYSTEMS WITHOUT DRIFT [J].
CORON, JM .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1992, 5 (03) :295-312
[9]   On certain hyperelliptic signals that are natural controls for nonholonomic motion planning [J].
Gauthier, Jean-Paul ;
Monroy-Perez, Felipe .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2015, 27 (03) :415-437
[10]  
Gauthier JP, 2014, IEEE DECIS CONTR P, P3731, DOI 10.1109/CDC.2014.7039970