Zero-shot Domain Adaptation Based on Attribute Information

被引:0
|
作者
Ishii, Masato [1 ,2 ,3 ]
Takenouchi, Takashi [2 ,4 ]
Sugiyama, Masashi [1 ,2 ]
机构
[1] Univ Tokyo, Tokyo 1138654, Japan
[2] RIKEN Ctr Adv Intelligence Project, Tokyo 1030027, Japan
[3] NEC Data Sci Res Labs, Sagamihara, Kanagawa 2118666, Japan
[4] Future Univ Hakodate, Hakodate, Hokkaido 0418655, Japan
来源
ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101 | 2019年 / 101卷
关键词
Domain adaptation; transfer learning; instance weighting;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel domain adaptation method that can be applied without target data. We consider the situation where domain shift is caused by a prior change of a specific factor and assume that we know how the prior changes between source and target domains. We call this factor an attribute, and reformulate the domain adaptation problem to utilize the attribute prior instead of target data. In our method, the source data are reweighted with the sample-wise weight estimated by the attribute prior and the data themselves so that they are useful in the target domain. We theoretically reveal that our method provides more precise estimation of sample-wise transferability than a straightforward attribute-based reweighting approach. Experimental results with both toy datasets and benchmark datasets show that our method can perform well, though it does not use any target data.
引用
收藏
页码:473 / 488
页数:16
相关论文
共 50 条
  • [21] Incorporating attribute-level aligned comparative network for generalized zero-shot learning
    Chen, Yuan
    Zhou, Yuan
    NEUROCOMPUTING, 2024, 573
  • [22] An Attribute Description Transfer Based Model for Zero-Shot Intelligent Diagnosis of High-Voltage Circuit Breakers
    Yang, Qiuyu
    Lin, Yuyi
    Zhai, Zhenlin
    Ruan, Jiangjun
    Zhuang, Zhijian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (02) : 1249 - 1258
  • [23] Learning cross-domain semantic-visual relationships for transductive zero-shot learning
    Lv, Fengmao
    Zhang, Jianyang
    Yang, Guowu
    Feng, Lei
    Yu, Yufeng
    Duan, Lixin
    PATTERN RECOGNITION, 2023, 141
  • [24] Health status prediction of lithium ion batteries based on zero-shot learning
    Ge, Yang
    Ma, Jiaxin
    Sun, Guodong
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [25] Zero-Shot Learning With Transferred Samples
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    Gao, Yue
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) : 3277 - 3290
  • [26] Zero-Shot Transfer Learning Based on Visual and Textual Resemblance
    Yang, Gang
    Xu, Jieping
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT III, 2019, 11955 : 353 - 362
  • [27] Adversarial Distillation Adaptation Model with Sentiment Contrastive Learning for Zero-Shot Stance Detection
    Zhang, Yu
    Wang, Chunling
    Wang, Jia
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [28] Adversarial Distillation Adaptation Model with Sentiment Contrastive Learning for Zero-Shot Stance Detection
    Yu Zhang
    Chunling Wang
    Jia Wang
    International Journal of Computational Intelligence Systems, 16
  • [29] A hybrid semantic attribute-based zero-shot learning model for bearing fault diagnosis under unknown working conditions
    Shang, Zhiwu
    Tang, Lutai
    Pan, Cailu
    Cheng, Hongchuan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 136
  • [30] Zero-Shot Cross-Lingual Transfer in Legal Domain Using Transformer Models
    Shaheen, Zein
    Wohlgenannt, Gerhard
    Mouromtsev, Dmitry
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 450 - 456