A planar broadband substrate-integrated waveguide 1 x 2 array antenna for the Ka-band wireless communication

被引:1
作者
Chung, Ming-An [1 ]
Lin, Chia-Wei [1 ]
Meiy, Ing-Peng [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Elect Engn, Taipei 10608, Taiwan
关键词
5G networks; millimeter-wave antennas; planar antenna; substrate integrated waveguide (SIW); LOW-PROFILE; DESIGN;
D O I
10.1002/mop.34261
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a Ka-band substrate integrated waveguide (SIW) quasi-Yagi array antenna with the advantages of thinness, compactness, wide bandwidth, and higher gain. Analyzing the microstrip-to-SIW transition structure to confirm that the designed structure provides the best performance, the optimum reflectance coefficient bandwidth can be obtained. With the optimized rectangular etched slot structure at the antenna end, the impedance matching can be tuned to improve the bandwidth. The designed array antenna is fabricated and measured for verification. The substrate is based on Al2O3 ceramic and the antenna size is 23.3 mm x $\times $ 13 mm x $\times $ 0.5 mm. The measurement results indicate that the antenna achieves an impedance bandwidth of 13.59% below -10dB, with an average gain of approximately 7 dBi and a peak gain of 7.4 dBi in 28.1-32.2 GHz. Therefore, the 1*2 antenna proposed in this paper has the advantages of compact and planar structure, easy fabrication, and easy integration into RF circuits, which is very suitable for Ka-Band applications.
引用
收藏
页数:8
相关论文
共 24 条
[1]   The Art of Substrate-Integrated-Waveguide Power Dividers [J].
Bilawal, Farah ;
Babaeian, Fatemeh ;
Trinh, Kim Tuyen ;
Karmakar, Nemai Chandra .
IEEE ACCESS, 2023, 11 :9311-9325
[2]   Single-Layer Dual-Band Balanced Substrate- Integrated Waveguide Filtering Power Divider for 5G Millimeter-Wave Applications [J].
Chi, Pei-Ling ;
Chen, Yi-Ming ;
Yang, Tao .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2020, 30 (06) :585-588
[3]   Cost-Effective High-Performance Air-Filled SIW Antenna Array for the Global 5G 26 GHz and 28 GHz Bands [J].
de Paula, Igor Lima ;
Lemey, Sam ;
Bosman, Dries ;
Van den Brande, Quinten ;
Caytan, Olivier ;
Lambrecht, Joris ;
Cauwe, Maarten ;
Torfs, Guy ;
Rogier, Hendrik .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (02) :194-198
[4]   LTCC SIW-Vertical-Fed-Dipole Array Fed by a Microstrip Network With Tapered Microstrip-to-SIW Transitions for Wideband Millimeter-Wave Applications [J].
Du, Ming ;
Xu, Jun ;
Dong, Yuliang ;
Ding, Xiao .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2017, 16 :1953-1956
[5]   A six-port network based on substrate integrated waveguide coupler with metal strips [J].
Hu, Xiaojun ;
Xu, Feng .
IET MICROWAVES ANTENNAS & PROPAGATION, 2022, 16 (01) :18-28
[6]   Integration Design of Millimeter-Wave Bidirectional Endfire Filtenna Array Fed by SIW Filtering Power Divider [J].
Huang, Ye-Xin ;
Yan, Yu-Xing ;
Yu, Wei ;
Qin, Wei ;
Chen, Jian-Xin .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (07) :1457-1461
[7]   Design of SIW Cavity-Backed Circular-Polarized Antennas Using Two Different Feeding Transitions [J].
Kim, Dong-Yeon ;
Lee, Jae W. ;
Lee, Taek K. ;
Cho, Choon Sik .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (04) :1398-1403
[8]   Wideband high gain SIW horn antenna loaded with half Maxwell fish-eye fabricated by 3-D-printing [J].
Lei, Siyuan ;
Wei, Gao ;
Han, Kangkang ;
Li, Xianlei .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2023, 65 (06) :1670-1676
[9]   Substrate Integrated Waveguide (SIW) Leaky-Wave Antenna With Transverse Slots [J].
Liu, Juhua ;
Jackson, David R. ;
Long, Yunliang .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (01) :20-29
[10]   Bandwidth-Enhanced Low-Profile Cavity-Backed Slot Antenna by Using Hybrid SIW Cavity Modes [J].
Luo, Guo Qing ;
Hu, Zhi Fang ;
Li, Wen Jun ;
Zhang, Xiao Hong ;
Sun, Ling Ling ;
Zheng, Jian Feng .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (04) :1698-1704