3D Conjugated Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells and Modules

被引:6
|
作者
Zhang, Xianfu [1 ,2 ]
Liu, Xuepeng [1 ]
Ding, Yunxuan [3 ,4 ,5 ,6 ]
Ding, Bin [2 ]
Shi, Pengju [7 ]
Syzgantseva, Olga A. [8 ]
Syzgantseva, Maria A. [9 ]
Fei, Zhaofu [2 ]
Chen, Jianlin [1 ]
Rahim, Ghadari [10 ]
Han, Mingyuan [1 ]
Zhang, Kai [1 ]
Zhou, Ying [1 ]
Brooks, Keith G. [2 ]
Wang, Rui [7 ]
Sun, Licheng [3 ,4 ,5 ,6 ]
Dyson, Paul J. [2 ]
Dai, Songyuan [1 ]
Nazeeruddin, Mohammad Kahaj Khaja [2 ,11 ]
Ding, Yong [1 ,2 ]
机构
[1] North China Elect Power Univ, Beijing Key Lab Novel Thin Film Solar Cells, Beijing 102206, Peoples R China
[2] Ecole Polytech Fed Lausanne EPFL, Inst Sci & Ingenierie Chim, CH-1015 Lausanne, Switzerland
[3] Westlake Univ, Ctr Artificial Photosynth Solar Fuels, Sch Sci, Hangzhou 310024, Peoples R China
[4] Westlake Univ, Sch Sci, Dept Chem, Hangzhou 310024, Peoples R China
[5] Westlake Univ, Res Ctr Ind Future, Hangzhou 310024, Peoples R China
[6] Westlake Univ, Div Solar Energy Convers & Catalysis, Zhejiang Baima Lake Lab Co Ltd, Hangzhou 310000, Zhejiang, Peoples R China
[7] Westlake Univ, Sch Engn, Hangzhou 310024, Peoples R China
[8] Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia
[9] Mendeleev Univ Chem Technol, Dept Phys, Moscow 125047, Russia
[10] Univ Tabriz, Fac Chem, Dept Organ & Biochem, Computat Chem Lab, Tabriz 5166616471, Iran
[11] King Abdulaziz Univ, Fac Sci, Chem Dept, POB 80203, Jeddah 21589, Saudi Arabia
基金
国家重点研发计划; 瑞士国家科学基金会; 中国国家自然科学基金;
关键词
3,4-ethylenedioxythiophene; dibenzo(g; p)chrysene; hole transporting materials; interfacial interaction; perovskite solar cells; perovskite solar module; SPIRO-OMETAD; LOW-COST;
D O I
10.1002/adma.202310619
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The orthogonal structure of the widely used hole transporting material (HTM) 2,2 ',7,7 '-tetrakis(N, N-di-p-methoxyphenylamino)-9,9 '-spirobifluorene (Spiro-OMeTAD) imparts isotropic conductivity and excellent film-forming capability. However, inherently weak intra- and inter-molecular pi-pi interactions result in low intrinsic hole mobility. Herein, a novel HTM, termed FTPE-ST, with a twist conjugated dibenzo(g,p)chrysene core and coplanar 3,4-ethylenedioxythiophene (EDOT) as extended donor units, is designed to enhance pi-pi interactions, without compromising on solubility. The three-dimensional (3D) configuration provides the material multi-direction charge transport as well as excellent solubility even in 2-methylanisole, and its large conjugated backbone endows the HTM with a high hole mobility. Moreover, the sulfur donors in EDOT units coordinate with lead ions on the perovskite surface, leading to stronger interfacial interactions and the suppression of defects at the perovskite/HTM interface. As a result, perovskite solar cells (PSCs) employing FTPE-ST achieve a champion power conversion efficiency (PCE) of 25.21% with excellent long-time stability, one of the highest PCEs for non-spiro HTMs in n-i-p PSCs. In addition, the excellent film-forming capacity of the HTM enables the fabrication of FTPE-ST-based large-scale PSCs (1.0 cm2) and modules (29.0 cm2), which achieve PCEs of 24.21% (certificated 24.17%) and 21.27%, respectively. A novel 3D hole transporting material termed FTPE-ST is reported, which has a large conjugated structure leading to high hole mobility, and sulfur atoms that can bind to coordinately unsaturated lead centers on the surface of perovskite films, enhancing interfacial interactions. Perovskite solar cells and modules incorporating FTPE-ST achieve power conversion efficiencies of 25.21 and 21.27%, respectively. image
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Cyclization of methoxy groups on spiro-type hole transporting materials for efficient and stable perovskite solar cells
    Zhou, Ying
    Zhang, Xianfu
    Han, Mingyuan
    Wu, Nan
    Chen, Jianlin
    Rahim, Ghadari
    Wu, Yahan
    Dai, Songyuan
    Liu, Xuepeng
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 257
  • [22] A Comprehensive Review of Organic Hole-Transporting Materials for Highly Efficient and Stable Inverted Perovskite Solar Cells
    Duan, Yuwei
    Chen, Yu
    Wu, Yihui
    Liu, Zhike
    Liu, Shengzhong
    Peng, Qiang
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (25)
  • [23] Rationally designed hole transporting layer system for efficient and stable perovskite solar cells
    Lee, Jaehee
    Son, Taewoong
    Min, Kyeongbin
    Park, Seongjun
    Kim, Youngwoong
    Seo, Jangwon
    ECOMAT, 2023, 5 (11)
  • [24] Organic hole-transporting materials for efficient perovskite solar cells
    Zhao, Xiaojuan
    Wang, Mingkui
    MATERIALS TODAY ENERGY, 2018, 7 : 208 - 220
  • [25] Recent Advances in Organic Hole Transporting Materials for Perovskite Solar Cells
    Sheibani, Esmaeil
    Yang, Li
    Zhang, Jinbao
    SOLAR RRL, 2020, 4 (12)
  • [26] Metallated Macrocyclic Derivatives as a Hole - Transporting Materials for Perovskite Solar Cells
    Reddy, Govind
    Devulapally, Koteshwar
    Islavath, Nanaji
    Giribabu, Lingamallu
    CHEMICAL RECORD, 2019, 19 (10) : 2157 - 2177
  • [27] Poly(3-hexylthiophene)/Gold Nanorod Composites as Efficient Hole-Transporting Materials for Perovskite Solar Cells
    Wang, Junjie
    Hu, Qikun
    Li, Minzhang
    Shan, Haiquan
    Feng, Yaomiao
    Xu, Zong-Xiang
    SOLAR RRL, 2020, 4 (06)
  • [28] Dopant-Free Hole Transporting Materials for Perovskite Solar Cells
    Rezaee, Ehsan
    Liu, Xiaoyuan
    Hu, Qikun
    Dong, Lei
    Chen, Qian
    Pan, Jia-Hong
    Xu, Zong-Xiang
    SOLAR RRL, 2018, 2 (11):
  • [29] Side substitution on benzothiadiazole-based hole transporting materials with a D-A-D molecular configuration for efficient perovskite solar cells
    Yang, Jixin
    Hu, Weixia
    CURRENT APPLIED PHYSICS, 2023, 45 : 18 - 24
  • [30] Core Fusion Engineering of Hole-Transporting Materials for Efficient Perovskite Solar Cells
    Liang, Lusheng
    Wang, Yang
    Zhang, Zilong
    Wang, Junwei
    Feng, Kui
    Ma, Suxiang
    Li, Yongchun
    Guo, Xugang
    Gao, Peng
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (02) : 1250 - 1258