Computational approaches for clinical, genomic and proteomic markers of response to glucagon-like peptide-1 therapy in type-2 diabetes mellitus: An exploratory analysis with machine learning algorithms

被引:2
作者
Villikudathil, Angelina Thomas [1 ]
Guigan, Declan H. Mc [1 ]
English, Andrew [2 ]
机构
[1] Ulster Univ, Fac Life & Hlth Sci, Ctr Stratified Med, Magee Campus, Londonderry, North Ireland
[2] Teesside Univ, Sch Hlth & Life Sci, Middlesbrough, England
关键词
Type-2 diabetes mellitus; Glucagon-like peptide-1; Machine learning; Genomics; Proteomics; RECEPTOR AGONISTS; OUTCOMES;
D O I
10.1016/j.dsx.2024.103086
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction: In 2021, the International Diabetes Federation reported that 537 million people worldwide are living with diabetes. While glucagon-like peptide-1 agonists provide significant benefits in diabetes management, approximately 40 % of patients do not respond well to this therapy. This study aims to enhance treatment outcomes by using machine learning to predict individual response status to glucagon-like peptide-1 therapy. Methods: We analysed a type-2 diabetes mellitus dataset from the Diastrat cohort, recruited at the Northern Ireland Centre for Stratified Medicine. The dataset included individuals prescribed glucagon-like peptide-1 therapy, with response status determined by glycated haemoglobin levels of <= 53 mmol/mol. We identified genomic and proteomic markers and developed machine learning models to predict therapy response. Results: The study found 5 genomic variants and 45 proteomic markers that help differentiate glucagon-like peptide-1 therapy responders from non-responders, achieving 95 % prediction accuracy with a machine learning model. Conclusion: This study demonstrates the potential of machine learning in predicting the response to glucagon-like peptide-1 therapy in individuals with type-2 diabetes mellitus. These findings suggest that integrating genomic and proteomic data can significantly enhance personalized treatment approaches, potentially improving outcomes for patients who might otherwise not respond well to glucagon-like peptide-1 therapy. Further research and validation in larger cohorts are necessary to confirm these results and translate them into clinical practice.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning -An Artificial Intelligence Concept
    Abajian, Aaron
    Murali, Nikitha
    Savic, Lynn Jeanette
    Laage-Gaupp, Fabian Max
    Nezami, Nariman
    Duncan, James S.
    Schlachter, Todd
    Lin, MingDe
    Geschwind, Jean-Francois
    Chapiro, Julius
    [J]. JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2018, 29 (06) : 850 - 857
  • [2] Bailey CJ, 2017, Future drug treatments for type 2 diabetes, P1000
  • [3] Sirtuin 6 Expression and Inflammatory Activity in Diabetic Atherosclerotic Plaques: Effects of Incretin Treatment
    Balestrieri, Maria Luisa
    Rizzo, Maria Rosaria
    Barbieri, Michelangela
    Paolisso, Pasquale
    D'Onofrio, Nunzia
    Giovane, Alfonso
    Siniscalchi, Mario
    Minicucci, Fabio
    Sardu, Celestino
    D'Andrea, Davide
    Mauro, Ciro
    Ferraraccio, Franca
    Servillo, Luigi
    Chirico, Fabio
    Caiazzo, Pasquale
    Paolisso, Giuseppe
    Marfella, Raffaele
    [J]. DIABETES, 2015, 64 (04) : 1395 - 1406
  • [4] Targeted Proteomics Reveals Inflammatory Pathways that Classify Immune Dysregulation in Common Variable Immunodeficiency
    Berbers, Roos-Marijn
    Drylewicz, Julia
    Ellerbroek, Pauline M.
    van Montfrans, Joris M.
    Dalm, Virgil A. S. H.
    van Hagen, P. Martin
    Keller, Baerbel
    Warnatz, Klaus
    van de Ven, Annick
    van Laar, Jaap M.
    Nierkens, Stefan
    Leavis, Helen L.
    [J]. JOURNAL OF CLINICAL IMMUNOLOGY, 2021, 41 (02) : 362 - 373
  • [5] Newer GLP-1 receptor agonists and obesity-diabetes
    Brown, Emily
    Cuthbertson, Daniel J.
    Wilding, John P.
    [J]. PEPTIDES, 2018, 100 : 61 - 67
  • [6] Patient Characteristics are not Associated with Clinically Important Differential Response to Dapagliflozin: a Staged Analysis of Phase 3 Data
    Bujac, Sarah
    Del Parigi, Angelo
    Sugg, Jennifer
    Grandy, Susan
    Liptrot, Tom
    Karpefors, Martin
    Chamberlain, Chris
    Boothman, Anne-Marie
    [J]. DIABETES THERAPY, 2014, 5 (02) : 471 - 482
  • [7] Intravitreal AAV2.COMP-Ang1 Prevents Neurovascular Degeneration in a Murine Model of Diabetic Retinopathy
    Cahoon, Judd M.
    Rai, Ruju R.
    Carroll, Lara S.
    Uehara, Hironori
    Zhang, Xiaohui
    O'Neil, Christina L.
    Medina, Reinhold J.
    Das, Subtrata K.
    Muddana, Santosh K.
    Olson, Paul R.
    Nielson, Spencer
    Walker, Kortnie
    Flood, Maggie M.
    Messenger, Wyatt B.
    Archer, Bonnie J.
    Barabas, Peter
    Krizaj, David
    Gibson, Christopher C.
    Li, Dean Y.
    Koh, Gou Y.
    Gao, Guangping
    Stitt, Alan W.
    Ambati, Balamurali K.
    [J]. DIABETES, 2015, 64 (12) : 4247 - 4259
  • [8] Glucagon-Like Peptide 1 (GLP-1) Receptor Variants and Glycemic Response to Liraglutide: A Pharmacogenetics Study in Iranian People with Type 2 Diabetes Mellitus
    Eghbali, Maryam
    Alaei-Shahmiri, Fariba
    Hashemi-Madani, Nahid
    Emami, Zahra
    Mostafavi, Ladan
    Malek, Mojtaba
    Khamseh, Mohammad E.
    [J]. ADVANCES IN THERAPY, 2024, 41 (02) : 826 - 836
  • [9] Determinants of response to the glucagon-like peptide-1 receptor agonists in a type 2 diabetes population in the real-world
    Franch-Nadal, Josep
    Granado-Casas, Minerva
    Mata-Cases, Manel
    Ortega, Emilio
    Vlacho, Bogdan
    Mauricio, Didac
    [J]. PRIMARY CARE DIABETES, 2022, 16 (06) : 810 - 817
  • [10] Determinants of good metabolic control without weight gain in type 2 diabetes management: a machine learning analysis
    Giorda, Carlo Bruno
    Pisani, Federico
    De Micheli, Alberto
    Ponzani, Paola
    Russo, Giuseppina
    Guaita, Giacomo
    Zilich, Rita
    Musacchio, Nicoletta
    [J]. BMJ OPEN DIABETES RESEARCH & CARE, 2020, 8 (01)