Global weak solutions of the Serre-Green-Naghdi equations with surface tension

被引:0
|
作者
Guelmame, Billel [1 ]
机构
[1] Univ Cote Azur, LJAD, CNRS, INRIA, Av Valrose, F-06000 Nice, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2024年 / 41卷 / 03期
关键词
Serre-Green-Naghdi equations; shallow water; surface tension; weak solutions; energy dissipation; CAPILLARY-GRAVITY WAVES; SHALLOW-WATER; BOUSSINESQ SYSTEM; WELL-POSEDNESS; EULER; REGULARIZATION; DERIVATION; EXISTENCE; LIMIT;
D O I
10.4171/AIHPC/99
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Serre-Green-Naghdi equations with surface tension. Smooth solutions of this system conserve an H 1 -equivalent energy. We prove the existence of global weak dissipative solutions for any relatively small -energy initial data. We also prove that the Riemann invariants of the solutions satisfy a one-sided Oleinik inequality.
引用
收藏
页码:749 / 795
页数:47
相关论文
共 50 条