Transfer Learning-Based B-Line Assessment of Lung Ultrasound for Acute Heart Failure

被引:3
作者
Pare, Joseph R. [1 ,2 ,3 ,4 ,6 ]
Gjesteby, Lars A. [5 ]
Tonelli, Melinda [4 ]
Leo, Megan M. [4 ]
Muruganandan, Krithika M. [4 ]
Choudhary, Gaurav [1 ,2 ,3 ]
Brattain, Laura J. [5 ]
机构
[1] Brown Univ, Alpert Med Sch, Providence, RI USA
[2] Lifespan, Providence, RI USA
[3] Providence VA Med Ctr, Providence, RI USA
[4] Boston Univ, Boston, MA USA
[5] MIT Lincoln Lab, Human Hlth & Performance Syst Grp, Lexington, MA USA
[6] Brown Emergency Med, Dept Emergency Med, 55 Claverick St, Providence, RI 02903 USA
关键词
Lung ultrasound; Heart failure; Transfer learning; Arti ficial intelligence; PULMONARY CONGESTION; EMERGENCY-DEPARTMENT; AMERICAN-COLLEGE; ASSOCIATION; RECOMMENDATIONS; MANAGEMENT; CARDIOLOGY; DYSPNEA; SOCIETY;
D O I
10.1016/j.ultrasmedbio.2024.02.004
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Objective: B-lines assessed by lung ultrasound (LUS) outperform physical exam, chest radiograph, and biomarkers for the associated diagnosis of acute heart failure (AHF) in the emergent setting. The use of LUS is however limited to trained professionals and suffers from interpretation variability. The objective was to utilize transfer learning to create an AI-enabled software that can aid novice users to automate LUS B-line interpretation. Methods: Data from an observational AHF LUS study provided standardized cine clips for AI model development and evaluation. A total of 49,952 LUS frames from 30 patients were hand scored and trained on a convolutional neural network (CNN) to interpret B-lines at the frame level. A random independent evaluation set of 476 LUS clips from 60 unique patients assessed model performance. The AI models scored the clips on both a binary and ordinal 0-4 multiclass assessment. Results: A multiclassification AI algorithm had the best performance at the binary level when applied to the independent evaluation set, AUC of 0.967 (95% CI 0.965-0.970) for detecting pathologic conditions. When compared to expert blinded reviewer, the 0-4 multiclassification AI algorithm scale had a reported linear weighted kappa of 0.839 (95% CI 0.804-0.871). Conclusions: The multiclassification AI algorithm is a robust and well performing model at both binary and ordinal multiclass B-line evaluation. This algorithm has the potential to be integrated into clinical workflows to assist users with quantitative and objective B-line assessment for evaluation of AHF.
引用
收藏
页码:825 / 832
页数:8
相关论文
共 35 条
[1]   Inter-Rater Reliability of Quantifying Pleural B-Lines Using Multiple Counting Methods [J].
Anderson, Kenton L. ;
Fields, J. Matthew ;
Panebianco, Nova L. ;
Jenq, Katherine Y. ;
Marin, Jennifer ;
Dean, Anthony J. .
JOURNAL OF ULTRASOUND IN MEDICINE, 2013, 32 (01) :115-120
[2]   Automated Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm [J].
Baloescu, Cristiana ;
Toporek, Grzegorz ;
Kim, Seungsoo ;
McNamara, Katelyn ;
Liu, Rachel ;
Shaw, Melissa M. ;
McNamara, Robert L. ;
Raju, Balasundar I. ;
Moore, Christopher L. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (11) :2312-2320
[3]  
Bossuyt PM, 2015, BMJ-BRIT MED J, V351, DOI [10.1148/radiol.2015151516, 10.1136/bmj.h5527, 10.1373/clinchem.2015.246280]
[4]   Body mass index and B-lines on lung ultrasonography in chronic and acute heart failure [J].
Brainin, Philip ;
Claggett, Brian ;
Lewis, Eldrin F. ;
Dwyer, Kristin H. ;
Merz, Allison A. ;
Silverman, Montane B. ;
Swamy, Varsha ;
Biering-Sorensen, Tor ;
Rivero, Jose ;
Cheng, Susan ;
McMurray, John J. V. ;
Solomon, Scott D. ;
Platz, Elke .
ESC HEART FAILURE, 2020, 7 (03) :1201-1209
[5]   Automated B-Line Scoring on Thoracic Sonography [J].
Brattain, Laura J. ;
Telfer, Brian A. ;
Liteplo, Andrew S. ;
Noble, Vicki E. .
JOURNAL OF ULTRASOUND IN MEDICINE, 2013, 32 (12) :2185-2190
[6]   Feasibility of patient-performed lung ultrasound self-exams (Patient-PLUS) as a potential approach to telemedicine in heart failure [J].
Chiem, Alan T. ;
Lim, George W. ;
Tabibnia, Amir P. ;
Takemoto, Andrea S. ;
Weingrow, Daniel M. ;
Shibata, Jacqueline E. .
ESC HEART FAILURE, 2021, 8 (05) :3997-4006
[7]   Comparison of Expert and Novice Sonographers' Performance in Focused Lung Ultrasonography in Dyspnea (FLUID) to Diagnose Patients With Acute Heart Failure Syndrome [J].
Chiem, Alan T. ;
Chan, Connie H. ;
Ander, Douglas S. ;
Kobylivker, Andrew N. ;
Manson, William C. .
ACADEMIC EMERGENCY MEDICINE, 2015, 22 (05) :564-573
[8]   Lung ultrasound and short-term prognosis in heart failure patients [J].
Cogliati, Chiara ;
Casazza, Giovanni ;
Ceriani, Elisa ;
Torzillo, Daniela ;
Furlotti, Stefano ;
Bossi, Ilaria ;
Vago, Tarcisio ;
Costantino, Giorgio ;
Montano, Nicola .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2016, 218 :104-108
[9]   Lung B-line artefacts and their use [J].
Dietrich, Christoph F. ;
Mathis, Gebhard ;
Blaivas, Michael ;
Volpicelli, Giovanni ;
Seibel, Armin ;
Wastl, Daniel ;
Atkinson, Nathan S. S. ;
Cui, Xin-Wu ;
Fan, Mei ;
Yi, Dong .
JOURNAL OF THORACIC DISEASE, 2016, 8 (06) :1356-1365
[10]   Lung ultrasound in outpatients with heart failure: the wet-to-dry HF study [J].
Domingo, Mar ;
Lupon, Josep ;
Girerd, Nicolas ;
Conangla, Laura ;
de Antonio, Marta ;
Moliner, Pedro ;
Santiago-Vacas, Evelyn ;
Codina, Pau ;
Cediel, German ;
Spitaleri, Giosafat ;
Gonzalez, Beatriz ;
Diaz, Violeta ;
Rivas, Carmen ;
Velayos, Patricia ;
Nunez, Julio ;
Bayes-Genis, Antoni .
ESC HEART FAILURE, 2021, 8 (06) :4506-4516