Exploring Advanced Versions of Hermite-Hadamard and Trapezoid-Type Inequalities by Implementation of Fuzzy Interval-Valued Functions

被引:1
作者
Niu, Yaqun [1 ]
Ali, Rana Safdar [2 ]
Talib, Naila [2 ]
Mubeen, Shahid [3 ]
Rahman, Gauhar [4 ]
Yildiz, Cetin [5 ]
Awwad, Fuad A. [6 ]
Ismail, Emad A. A. [6 ]
机构
[1] Taiyuan Univ, Dept Math, Taiyuan 030032, Shanxi, Peoples R China
[2] Univ Lahore, Dept Math & Stat, Lahore, Pakistan
[3] Univ Sargodha, Dept Math, Sargodha, Pakistan
[4] Hazara Univ, Dept Math & Stat, Mansehra 21300, Pakistan
[5] Ataturk Univ, KK Educ Fac, Dept Math, TR-25240 Erzurum, Turkiye
[6] King Saud Univ, Coll Business Adm, Dept Quantitat Anal, POB 71115, Riyadh 11587, Saudi Arabia
关键词
FRACTIONAL INTEGRAL-INEQUALITIES;
D O I
10.1155/2024/1988187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The extension of interval-valued and real-valued functions known as fuzzy interval-valued function (FIVF) has made substantial contributions to the theory of interval analysis. In this article, we explore the importance of h-Godunova-Levin fuzzy convex and preinvex functions and also develop the new generation of the Hermite-Hadamard and trapezoid-type fuzzy fractional integral by the implementation of generalized fuzzy fractional operators having modified version of the Bessel-Maitland E1vBMF function as its kernel. Moreover, we extract some well-known inequalities from our main results.
引用
收藏
页数:14
相关论文
共 33 条
[1]   Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series [J].
Ali, Khalid K. ;
Abd El Salam, Mohamed A. ;
Mohamed, Emad M. H. ;
Samet, Bessem ;
Kumar, Sunil ;
Osman, M. S. .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[2]   Some Fractional Operators with the Generalized Bessel-Maitland Function [J].
Ali, R. S. ;
Mubeen, S. ;
Nayab, I ;
Araci, Serkan ;
Rahman, G. ;
Nisar, K. S. .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
[3]   Dynamical significance of generalized fractional integral inequalities via convexity [J].
Ali, Sabila ;
Mubeen, Shahid ;
Ali, Rana Safdar ;
Rahman, Gauhar ;
Morsy, Ahmed ;
Nisar, Kottakkaran Sooppy ;
Purohit, Sunil Dutt ;
Zakarya, M. .
AIMS MATHEMATICS, 2021, 6 (09) :9705-9730
[4]   Some Integral Inequalities for h-Godunova-Levin Preinvexity [J].
Almutairi, Ohud ;
Kilicman, Adem .
SYMMETRY-BASEL, 2019, 11 (12)
[5]   Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative [J].
Chalco-Cano, Y. ;
Flores-Franulič, A. ;
Román-Flores, H. .
Computational and Applied Mathematics, 2012, 31 (03) :457-472
[6]   Jensen's inequality type integral for fuzzy-interval-valued functions [J].
Costa, T. M. .
FUZZY SETS AND SYSTEMS, 2017, 327 :31-47
[7]   Some integral inequalities for fuzzy-interval-valued functions [J].
Costa, T. M. ;
Roman-Flores, H. .
INFORMATION SCIENCES, 2017, 420 :110-125
[8]   Hermite-Hadamard-Fejer Inequality Related to Generalized Convex Functions via Fractional Integrals [J].
Delavar, M. Rostamian ;
Aslani, S. Mohammadi ;
De La Sen, M. .
JOURNAL OF MATHEMATICS, 2018, 2018
[9]   A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative [J].
Ghanbari, Behzad ;
Kumar, Sunil ;
Kumar, Ranbir .
CHAOS SOLITONS & FRACTALS, 2020, 133
[10]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317