Graph neural networks for anomaly detection and diagnosis in hydrogen extraction systems

被引:1
|
作者
Seo, Jin [1 ]
Noh, Yoojeong [1 ]
Kang, Young-Jin [2 ]
Lim, Jaehun [1 ]
Ahn, Seungho [3 ]
Song, Inhyuk [3 ]
Kim, Kyung Chun [1 ]
机构
[1] Pusan Natl Univ, Sch Mech Engn, Busan 46241, South Korea
[2] Pusan Natl Univ, Res Inst Mech Technol, Busan 46241, South Korea
[3] PANASIA, Busan 46744, South Korea
基金
新加坡国家研究基金会;
关键词
Graph neural network; Link prediction; Degree centrality; Hydrogen extractor; Steam methane reforming; Anomaly detection and diagnosis; FAULT-DIAGNOSIS; GENERATION UNIT;
D O I
10.1016/j.engappai.2024.108846
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent research has been actively conducted on fault diagnosis in hydrogen extraction systems using artificial intelligence. However, existing studies have not considered the characteristics of hydrogen extractors, where multiple processes form a single system and anomalies in one subsystem can impact others. This study proposes a method combining graph autoencoders (GAE) with graph convolutional networks (GCN) to detect and diagnose anomalies in hydrogen extraction systems. The integrated GAE-GCN model generates an adjacency matrix that represents changes in component dynamic relationships based on system topology information and featureaugmented sensor data. Anomalies are detected using reconstruction errors from an autoencoder model trained on the degree centrality of the adjacency matrix in the normal state. The diagnosis of anomalies in a specific heat exchanger is achieved by identifying the associated nodes through graph analysis. This research contributes to effective anomaly detection and diagnosis in hydrogen extraction systems using graph neural networks.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Overview of the Application of Knowledge Graph in Anomaly Detection and Fault Diagnosis
    Huang, Peizheng
    Liu, Shulin
    Zhang, Kuan
    Xu, Tao
    Yi, Xiaojian
    2022 4TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY ENGINEERING, SRSE, 2022, : 207 - 213
  • [22] Enhancing Fault Diagnosis in Mechanical Systems with Graph Neural Networks Addressing Class Imbalance
    Lu, Wenhao
    Wang, Wei
    Qin, Xuefei
    Cai, Zhiqiang
    MATHEMATICS, 2024, 12 (13)
  • [23] Multipattern Integrated Networks With Contrastive Pretraining for Graph Anomaly Detection
    Yang, Manzhi
    Zhang, Jian
    Lin, Liyuan
    Han, Jinpeng
    Chen, Xiaoguang
    Wang, Zhen
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (05): : 5619 - 5630
  • [24] Graph Neural Networks in Recommender Systems: A Survey
    Wu, Shiwen
    Sun, Fei
    Zhang, Wentao
    Xie, Xu
    Cui, Bin
    ACM COMPUTING SURVEYS, 2023, 55 (05)
  • [25] Adversarial Graph Neural Network for Multivariate Time Series Anomaly Detection
    Zheng, Bolong
    Ming, Lingfeng
    Zeng, Kai
    Zhou, Mengtao
    Zhang, Xinyong
    Ye, Tao
    Yang, Bin
    Zhou, Xiaofang
    Jensen, Christian S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 7612 - 7626
  • [26] Airway Anomaly Detection by Prototype-Based Graph Neural Network
    Zhao, Tianyi
    Yin, Zhaozheng
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V, 2021, 12905 : 195 - 204
  • [27] Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks
    Van Gompel, Jonas
    Spina, Domenico
    Develder, Chris
    ENERGY, 2023, 266
  • [28] Hybrid graph transformer networks for multivariate time series anomaly detection
    Gao, Rong
    He, Wei
    Yan, Lingyu
    Liu, Donghua
    Yu, Yonghong
    Ye, Zhiwei
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (01) : 642 - 669
  • [29] Hybrid graph transformer networks for multivariate time series anomaly detection
    Rong Gao
    Wei He
    Lingyu Yan
    Donghua Liu
    Yonghong Yu
    Zhiwei Ye
    The Journal of Supercomputing, 2024, 80 : 642 - 669
  • [30] Hardware Trojan Detection Using Graph Neural Networks
    Yasaei, Rozhin
    Chen, Luke
    Yu, Shih-Yuan
    Al Faruque, Mohammad Abdullah
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2025, 44 (01) : 25 - 38