Path Generating Inverse Gaussian Process Regression for Data-Driven Ultimate Boundedness Control of Nonlinear Systems

被引:0
作者
Jang, Yeongjun [1 ]
Chang, Hamin [1 ]
Park, Heein [1 ]
Shim, Hyungbo [1 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, ASRI, Seoul 08826, South Korea
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
关键词
Nonlinear systems; Gaussian processes; Trajectory; Numerical models; Mathematical models; Data models; Vectors; Data-driven control; Gaussian process regression; nonlinear systems;
D O I
10.1109/LCSYS.2024.3403525
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A data-driven ultimate boundedness controller for a nonlinear system is proposed. The controller is designed based on the inverse model of the system identified by Gaussian process regression with state/input measurement data to track a reference trajectory suitable for achieving a desired ultimate bound. In particular, a suitable reference trajectory is actively generated based on the data that have been used for the identification. For this reason, the controller is named the path generating inverse Gaussian process regression (PGIGP) controller. We provide a sufficient condition on the data under which the PGIGP controller guarantees ultimate boundedness with a desired ultimate bound. It is shown that the condition can serve as a practical guideline for data acquisition and, conversely, be employed to determine the baseline of the control performance achievable from a given dataset. The effectiveness of the PGIGP controller is demonstrated through numerical simulations.
引用
收藏
页码:748 / 753
页数:6
相关论文
共 18 条
  • [1] THEORY OF REPRODUCING KERNELS
    ARONSZAJN, N
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) : 337 - 404
  • [2] Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case
    Berberich, Julian
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4406 - 4421
  • [3] Devonport A, 2020, IEEE DECIS CONTR P, P3159, DOI [10.1109/CDC42340.2020.9304397, 10.1109/cdc42340.2020.9304397]
  • [4] Duvenaud D, 2014, PhD Thesis, DOI [DOI 10.17863/CAM.14087, 10.17863/CAM.14087]
  • [5] Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees
    Fiedler, Christian
    Scherer, Carsten W.
    Trimpe, Sebastian
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5122 - 5129
  • [6] Fiedler C, 2021, AAAI CONF ARTIF INTE, V35, P7439
  • [7] Cautious Model Predictive Control Using Gaussian Process Regression
    Hewing, Lukas
    Kabzan, Juraj
    Zeilinger, Melanie N.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (06) : 2736 - 2743
  • [8] Jagtap P, 2020, IEEE DECIS CONTR P, P3699, DOI 10.1109/CDC42340.2020.9303847
  • [9] Kanagawa M, 2018, Arxiv, DOI [arXiv:1807.02582, DOI 10.48550/ARXIV.1807.02582]
  • [10] Kim H., 2023, IEEE Access, V11