Ex-situ Characterization of Nb-Ti Alloy/Pt Coated Stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells

被引:11
|
作者
Madhavan, Pramoth Varsan [1 ]
Shahgaldi, Samaneh [2 ]
Li, Xianguo [1 ]
机构
[1] Univ Waterloo, Mech & Mechatron Engn, Waterloo, ON, Canada
[2] Univ Quebec Trois Rivieres, Hydrogen Res Inst, Quebec City, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fuel cell; Metallic bipolar plate; Nb-Ti alloy coating; Corrosion testing; Electrical and thermal conductivities; Interfacial contact resistance; THERMAL-CONDUCTIVITY; ELECTROCHEMICAL-BEHAVIOR; ELECTRICAL-CONDUCTIVITY; CORROSION-RESISTANCE; PROTECTIVE-COATINGS; CONTACT RESISTANCE; PEMFC; NIOBIUM; 304-STAINLESS-STEEL; HYDROGEN;
D O I
10.1016/j.enconman.2024.118536
中图分类号
O414.1 [热力学];
学科分类号
摘要
Metallic bipolar plates are crucial for the development of compact and lightweight proton exchange membrane fuel cell stacks; however, most of them encounter durability and conductivity challenges in the fuel cell environment. In this study, Nb-Ti alloy/Pt coatings are deposited on SS316L plates to enhance corrosion resistance, surface wettability, electrical and thermal conductivity, with reduced interfacial contact resistance. Corrosion resistance is assessed by exposing test samples to a 1M H2SO4 acidic environment at 25 degrees C and 80 degrees C, respectively, via potentiostatic and potentiodynamic polarization tests. It is found that Nb-Ti alloy/Pt coatings exhibit exceptional stability, with corrosion potential increased by 2.5 (at 25 degrees C) and 0.5 (at 80 degrees C) times and corrosion current density reduced by orders of magnitude; and their anti-corrosion performance far exceeds the technical targets set by the US Department of Energy, with a protective efficiency of 99.98 % at both temperatures tested. The coated samples have reduced water affinity, indicated by significantly larger contact angle values compared to the uncoated samples in both pre-and post-corrosion tests. The incorporation of Nb-Ti alloy/Pt coatings on SS316L increases the in-plane electrical conductivity by 42.6 % and thermal conductivity by 3.5 %; surpassing the US Department of Energy's technical targets in these categories as well. At a compaction force of 140 N/cm2, the interfacial contact resistance for the coated samples is about 2.5 times lower than the Department of Energy's requirements. These results indicate the viability of Nb-Ti alloy/Pt coated SS316L bipolar plates for fuel cell applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A novel ex-situ accelerated evaluation method for metallic bipolar plates in proton exchange membrane fuel cells
    Li, Huanming
    Bi, Feifei
    Dong, Liang
    Xu, Zhutian
    Li, Xiaobo
    Zhou, Fei
    Fan, Chenyao
    Shi, Weiyu
    Peng, Linfa
    Lai, Xinmin
    JOURNAL OF POWER SOURCES, 2023, 580
  • [2] Coated Stainless Steel Bipolar Plates for Proton Exchange Membrane Electrolyzers
    Lettenmeier, P.
    Wang, R.
    Abouatallah, R.
    Burggraf, F.
    Gago, A. S.
    Friedrich, K. A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) : F3119 - F3124
  • [3] Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC)
    Joseph, S
    McClure, JC
    Chianelli, R
    Pich, P
    Sebastian, PJ
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (12) : 1339 - 1344
  • [4] TiZrC-coated 316 L stainless steel bipolar plates for proton exchange membrane fuel cells
    Ma, Tiancai
    Guo, Huijin
    Tian, Yan
    Qi, Jinxuan
    Yao, Naiyuan
    MATERIALS TODAY COMMUNICATIONS, 2025, 42
  • [5] The Resistive Properties of Proton Exchange Membrane Fuel Cells With Stainless Steel Bipolar Plates
    Lee, Shuo-Jen
    Yang, Kung-Ting
    Lee, Yu-Ming
    Lee, Chi-Yuan
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2010, 7 (04): : 0410041 - 0410045
  • [6] High nitrogen stainless steel as bipolar plates for proton exchange membrane fuel cells
    Kumagai, Masanobu
    Myung, Seung-Taek
    Asaishi, Ryo
    Katada, Yasuyuki
    Yashiro, Hitoshi
    JOURNAL OF POWER SOURCES, 2008, 185 (02) : 815 - 821
  • [7] Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells
    Peng, Linfa
    Yi, Peiyun
    Lai, Xinmin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (36) : 21127 - 21153
  • [8] Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells
    Wang, Lun
    Tao, Youkun
    Zhang, Zhen
    Wang, Yajun
    Feng, Qi
    Wang, Haijiang
    Li, Hui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (10) : 4940 - 4950
  • [9] Characterization of Uncoated Stainless Steel as Proton Exchange Membrane Fuel Cell Bipolar Plates Material
    Caque, N.
    Paris, M.
    Chatenet, M.
    Rossinot, E.
    Bousquet, R.
    Claude, E.
    FUEL CELLS, 2012, 12 (02) : 248 - 255
  • [10] Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells
    Liu, Gaoyang
    Hou, Faguo
    Peng, Shanlong
    Wang, Xindong
    Fang, Baizeng
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (05) : 1099 - 1119