Perspectives on Optimized Transcranial Electrical Stimulation Based on Spatial Electric Field Modeling in Humans

被引:2
作者
Gomez-Tames, Jose [1 ,2 ]
Fernandez-Corazza, Mariano [3 ]
机构
[1] Chiba Univ, Grad Sch Engn, Dept Med Engn, Chiba 2638522, Japan
[2] Chiba Univ, Ctr Frontier Med Engn, Chiba 2638522, Japan
[3] Natl Univ La Plata, LEICI Inst Res Elect Control & Signal Proc, RA-1900 La Plata, Argentina
基金
日本学术振兴会;
关键词
tES; tDCS; tACS; FEM; transcranial electrical stimulation; electric field; current density; neurostimulation; optimization; brain template; computational model; FUNCTIONAL CONNECTIVITY CHANGES; HUMAN CEREBRAL-CORTEX; MAGNETIC STIMULATION; STROKE PATIENTS; BRAIN ATROPHY; IN-VIVO; TDCS; SAFETY; EEG; MOTOR;
D O I
10.3390/jcm13113084
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Transcranial electrical stimulation (tES) generates an electric field (or current density) in the brain through surface electrodes attached to the scalp. Clinical significance has been demonstrated, although with moderate and heterogeneous results partly due to a lack of control of the delivered electric currents. In the last decade, computational electric field analysis has allowed the estimation and optimization of the electric field using accurate anatomical head models. This review examines recent tES computational studies, providing a comprehensive background on the technical aspects of adopting computational electric field analysis as a standardized procedure in medical applications. Methods: Specific search strategies were designed to retrieve papers from the Web of Science database. The papers were initially screened based on the soundness of the title and abstract and then on their full contents, resulting in a total of 57 studies. Results: Recent trends were identified in individual- and population-level analysis of the electric field, including head models from non-neurotypical individuals. Advanced optimization techniques that allow a high degree of control with the required focality and direction of the electric field were also summarized. There is also growing evidence of a correlation between the computationally estimated electric field and the observed responses in real experiments. Conclusions: Computational pipelines and optimization algorithms have reached a degree of maturity that provides a rationale to improve tES experimental design and a posteriori analysis of the responses for supporting clinical studies.
引用
收藏
页数:31
相关论文
共 143 条
[1]   Multifocal Transcranial Direct Current Stimulation Modulates Resting-State Functional Connectivity in Older Adults Depending on the Induced Current Density [J].
Abellaneda-Perez, Kilian ;
Vaque-Alcazar, Lidia ;
Perellon-Alfonso, Ruben ;
Sole-Padulles, Cristina ;
Bargallo, Nuria ;
Salvador, Ricardo ;
Ruffini, Giulio ;
Nitsche, Michael A. ;
Pascual-Leone, Alvaro ;
Bartres-Faz, David .
FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
[2]   Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex [J].
Agboada, Desmond ;
Samani, Mohsen Mosayebi ;
Jamil, Asif ;
Kuo, Min-Fang ;
Nitsche, Michael A. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[3]  
[Anonymous], 2016, CGAL User and Reference Manual
[4]  
[Anonymous], 1980, SEMINAR NUMERICAL AN
[5]   Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines [J].
Antal, A. ;
Alekseichuk, I. ;
Bikson, M. ;
Brockmoeller, J. ;
Brunoni, A. R. ;
Chen, R. ;
Cohen, L. G. ;
Dowthwaite, G. ;
Ellrich, J. ;
Floeel, A. ;
Fregni, F. ;
George, M. S. ;
Hamilton, R. ;
Haueisen, J. ;
Herrmann, C. S. ;
Hummel, F. C. ;
Lefaucheur, J. P. ;
Liebetanz, D. ;
Loo, C. K. ;
McCaig, C. D. ;
Miniussi, C. ;
Miranda, P. C. ;
Moliadze, V. ;
Nitsche, M. A. ;
Nowak, R. ;
Padberg, F. ;
Pascual-Leone, A. ;
Poppendieck, W. ;
Priori, A. ;
Rossi, S. ;
Rossini, P. M. ;
Rothwell, J. ;
Rueger, M. A. ;
Ruffini, G. ;
Schellhorn, K. ;
Siebner, H. R. ;
Ugawa, Y. ;
Wexler, A. ;
Ziemann, U. ;
Hallett, M. ;
Paulus, W. .
CLINICAL NEUROPHYSIOLOGY, 2017, 128 (09) :1774-1809
[6]   Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans [J].
Antal, Andrea ;
Boros, Klara ;
Poreisz, Csaba ;
Chaieb, Leila ;
Terney, Daniella ;
Paulus, Walter .
BRAIN STIMULATION, 2008, 1 (02) :97-105
[7]   Inter-Subject Variability of Skull Conductivity and Thickness in Calibrated Realistic Head Models [J].
Antonakakis, Marios ;
Schrader, Sophie ;
Aydin, Umit ;
Khan, Asad ;
Gross, Joachim ;
Zervakis, Michalis ;
Rampp, Stefan ;
Wolters, Carsten H. .
NEUROIMAGE, 2020, 223
[8]   Towards precise brain stimulation: Is electric field simulation related to neuromodulation? [J].
Antonenko, Dania ;
Thielscher, Axel ;
Saturnino, Guilherme Bicalho ;
Aydin, Semiha ;
Ittermann, Bernd ;
Grittner, Ulrike ;
Floeel, Agnes .
BRAIN STIMULATION, 2019, 12 (05) :1159-1168
[9]   Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation [J].
Antonenko, Daria ;
Grittner, Ulrike ;
Saturnino, Guilherme ;
Nierhaus, Till ;
Thielscher, Axel ;
Floeel, Agnes .
NEUROIMAGE, 2021, 224
[10]   Sex difference in tDCS current mediated by changes in cortical anatomy: A study across young, middle and older adults [J].
Bhattacharjee, Sagarika ;
Kashyap, Rajan ;
Goodwill, Alicia M. ;
O'Brien, Beth Ann ;
Rapp, Brenda ;
Oishi, Kenichi ;
Desmond, John E. ;
Chen, S. H. Annabel .
BRAIN STIMULATION, 2022, 15 (01) :125-140