Non-local relativistic δ-shell interactions

被引:0
作者
Heriban, Lukas [1 ]
Tusek, Matej [1 ]
机构
[1] Czech Tech Univ, Dept Math, Fac Nucl Sci & Phys Engn, Trojanova 13, Prague, Czech Republic
关键词
Dirac operator; Shell interaction; Non-local potentials; Regular approximations; BOUNDARY-VALUE-PROBLEMS; DIRAC OPERATORS; PARADOX;
D O I
10.1007/s11005-024-01828-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, new self-adjoint realizations of the Dirac operator in dimension two and three are introduced. It is shown that they may be associated with the formal expression D-0+|F delta(Sigma)>< G delta(Sigma)|, where D-0 is the free Dirac operator, F and G are matrix valued coefficients, and delta(Sigma) stands for the single layer distribution supported on a hypersurface Sigma, and that they can be understood as limits of the Dirac operators with scaled non-local potentials. Furthermore, their spectral properties are analysed.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Efficient Spectral Collocation Algorithm for a Two-Sided Space Fractional Boussinesq Equation with Non-local Conditions
    Bhrawy, A. H.
    Abdelkawy, M. A.
    Ezz-Eldien, S. S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 2483 - 2506
  • [42] General i-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation
    Cassano, Biagio
    Lotoreichik, Vladimir
    Mas, Albert
    Tusek, Matej
    REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (04) : 1443 - 1492
  • [43] Shell interactions for Dirac operators
    Arrizabalaga, Naiara
    Mas, Albert
    Vega, Luis
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (04): : 617 - 639
  • [44] Approximation of one-dimensional relativistic point interactions by regular potentials revised
    Tusek, Matej
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (10) : 2585 - 2601
  • [45] The Mass Shell in the Semi-Relativistic Pauli–Fierz Model
    Martin Könenberg
    Oliver Matte
    Annales Henri Poincaré, 2014, 15 : 863 - 915
  • [46] The relativistic spherical δ-shell interaction in R3: Spectrum and approximation
    Mas, Albert
    Pizzichillo, Fabio
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
  • [47] Green's Function Related to a n-th Order Linear Differential Equation Coupled to Arbitrary Linear Non-Local Boundary Conditions
    Cabada, Alberto
    Lopez-Somoza, Lucia
    Yousfi, Mouhcine
    MATHEMATICS, 2021, 9 (16)
  • [48] Non-relativistic limit of a Dirac-Maxwell operator in relativistic quantum electrodynamics
    Arai, A
    REVIEWS IN MATHEMATICAL PHYSICS, 2003, 15 (03) : 245 - 270
  • [49] Resonances of the Dirac Hamiltonian in the non relativistic limit
    Amour, L
    Brummelhuis, R
    Nourrigat, J
    ANNALES HENRI POINCARE, 2001, 2 (03): : 583 - 603
  • [50] Resonances of the Dirac Hamiltonian in the Non Relativistic Limit
    L. Amour
    R. Brummelhuis
    J. Nourrigat
    Annales Henri Poincaré, 2001, 2 : 583 - 603