BiGRU-DP: Improved differential privacy protection method for trajectory data publishing

被引:2
作者
Shen, Zihao [1 ]
Zhang, Yuyang [1 ]
Wang, Hui [2 ]
Liu, Peiqian [2 ]
Liu, Kun [2 ]
Shen, Yanmei
机构
[1] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Peoples R China
[2] Henan Polytech Univ, Sch Software, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金;
关键词
Differential privacy; Trajectory data publishing; Machine learning; Trajectory prediction; Privacy protection; Location-based Services;
D O I
10.1016/j.eswa.2024.124264
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ignoring the temporal relationship of position points in trajectory data or the change in the number of position points in dummy trajectory generation can result in inadequate data availability. To address the data availability problem of publishing user trajectory data while ensuring privacy protection, this paper proposes an improved privacy protection method combining a Bidirectional Gated Recurrent Unit and differential privacy (BiGRU-DP). First, Laplace noise is added to the time attribute of the trajectory data. Secondly, BiGRU is used to predict the processing of trajectory data, considering the bi-directional data of the predicted point. Then, the k -means clustering method is used to generalize and optimize the trajectory data. Finally, the trajectory data is published after adding noise. The experimental simulation results show that BiGRU-DP enhances the availability of published data and has certain efficiency advantages over traditional trajectory data publishing methods while ensuring privacy protection.
引用
收藏
页数:12
相关论文
共 30 条
  • [1] A Unified Form of Fuzzy C-Means and K-Means algorithms and its Partitional Implementation
    Borlea, Ioan-Daniel
    Precup, Radu-Emil
    Borlea, Alexandra-Bianca
    Iercan, Daniel
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 214
  • [2] 鸡SAMD9L基因真核表达载体构建及其对ALV-J病毒复制的影响
    陈世豪
    潘诗雨
    赵睿涵
    吴挺
    [J]. 扬州大学学报(农业与生命科学版), 2021, 42 (06) : 54 - 59
  • [3] RNN-DP: A new differential privacy scheme base on Recurrent Neural Network for Dynamic trajectory privacy protection
    Chen, Si
    Fu, Anmin
    Shen, Jian
    Yu, Shui
    Wang, Huaqun
    Sun, Huaijiang
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 168
  • [4] OPTDP: Towards optimal personalized trajectory differential privacy for trajectory data publishing
    Cheng, Wenqing
    Wen, Ruxue
    Huang, Haojun
    Miao, Wang
    Wang, Chen
    [J]. NEUROCOMPUTING, 2022, 472 : 201 - 211
  • [5] Feng J., 2023, Transactions on Computers, P1, DOI [10.1109/TC.2023.3236868, DOI 10.1109/TC.2023.3236868]
  • [6] Privacy-Preserving Tensor Decomposition Over Encrypted Data in a Federated Cloud Environment
    Feng, Jun
    Yang, Laurence T.
    Zhu, Qing
    Choo, Kim-Kwang Raymond
    [J]. IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020, 17 (04) : 857 - 868
  • [7] Discovering location based services: A unified approach for heterogeneous indoor localization systems
    Furfari, Francesco
    Crivello, Antonino
    Baronti, Paolo
    Barsocchi, Paolo
    Girolami, Michele
    Palumbo, Filippo
    Quezada-Gaibor, Darwin
    Mendoza Silva, German M.
    Torres-Sospedra, Joaquin
    [J]. INTERNET OF THINGS, 2021, 13
  • [8] Guo Chuan, P MACHINE LEARNING R
  • [9] A location data protection protocol based on differential privacy
    Guo, Ping
    Ye, Baopeng
    Chen, Yuling
    Li, Tao
    Yang, Yixian
    Qian, Xiaobin
    [J]. 2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 306 - 311
  • [10] OMCPR: Optimal Mobility Aware Cache Data Pre-fetching and Replacement Policy Using Spatial K-Anonymity for LBS
    Gupta, Ajay K.
    Shanker, Udai
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2020, 114 (02) : 949 - 973