Self-supervised Network Evolution for Few-shot Classification

被引:0
|
作者
Tang, Xuwen [1 ]
Teng, Zhu [1 ]
Zhang, Baopeng [1 ]
Fan, Jianping [2 ]
机构
[1] Beijing Jiaotong Univ, Beijing, Peoples R China
[2] Lenovo Res, Res Triangle Pk, NC USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot classification aims to recognize new classes by learning reliable models from very few available samples. It could be very challenging when there is no intersection between the already-known classes (base set) and the novel set (new classes). To alleviate this problem, we propose to evolve the network (for the base set) via label propagation and self-supervision to shrink the distribution difference between the base set and the novel set. Our network evolution approach transfers the latent distribution from the already-known classes to the unknown (novel) classes by: (a) label propagation of the novel/new classes (novel set); and (b) design of dual-task to exploit a discriminative representation to effectively diminish the overfitting on the base set and enhance the generalization ability on the novel set. We conduct comprehensive experiments to examine our network evolution approach against numerous state-of-the-art ones, especially in a higher way setup and cross-dataset scenarios. Notably, our approach outperforms the second best state-of-the-art method by a large margin of 3.25% for one-shot evaluation over miniImageNet.
引用
收藏
页码:3045 / 3051
页数:7
相关论文
共 50 条
  • [41] Few-Shot Class Incremental Learning Leveraging Self-Supervised Features
    Ahmad, Touqeer
    Dhamija, Akshay Raj
    Cruz, Steve
    Rabinowitz, Ryan
    Li, Chunchun
    Jafarzadeh, Mohsen
    Boult, Terrance E.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3899 - 3909
  • [42] Self-supervised few-shot medical image segmentation with spatial transformations
    Titoriya, Ankit Kumar
    Singh, Maheshwari Prasad
    Singh, Amit Kumar
    Neural Computing and Applications, 2024, 36 (30) : 18675 - 18691
  • [43] Few-shot adaptation of GANs using self-supervised consistency regularization
    Israr, Syed Muhammad
    Saeed, Rehan
    Zhao, Feng
    KNOWLEDGE-BASED SYSTEMS, 2024, 302
  • [44] Self-Supervised and Few-Shot Contrastive Learning Frameworks for Text Clustering
    Shi, Haoxiang
    Sakai, Tetsuya
    IEEE ACCESS, 2023, 11 : 84134 - 84143
  • [45] Unsupervised Few-Shot Feature Learning via Self-Supervised Training
    Ji, Zilong
    Zou, Xiaolong
    Huang, Tiejun
    Wu, Si
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
  • [46] MANIFOLD AUGMENTATION BASED SELF-SUPERVISED CONTRASTIVE LEARNING FOR FEW-SHOT REMOTE SENSING SCENE CLASSIFICATION
    Sheng, Yunrui
    Xiao, Liang
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2239 - 2242
  • [47] Enhancing Few-Shot Image Classification With a Multi-Faceted Self-Supervised and Contrastive Learning Approach
    Hu, Ling
    Wu, Wei
    IEEE ACCESS, 2024, 12 : 164844 - 164861
  • [48] SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification
    Liu, Bing
    Zhao, Hongwei
    Li, Jiao
    Gao, Yansheng
    Zhang, Jianrong
    IET COMPUTER VISION, 2024, 18 (07) : 1034 - 1042
  • [49] SSL-MBC: Self-Supervised Learning With Multibranch Consistency for Few-Shot PolSAR Image Classification
    Li, Wenmei
    Xia, Hao
    Xi, Bin
    Wang, Yu
    Lu, Jing
    He, Yuhong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 4696 - 4710
  • [50] SEML: Self-Supervised Information-Enhanced Meta-learning for Few-Shot Text Classification
    Li, Hui
    Huang, Guimin
    Li, Yiqun
    Zhang, Xiaowei
    Wang, Yabing
    Li, Jun
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)