Deep Learning Based Traffic Accident Detection in Smart Transportation: A Machine Vision-Based Approach

被引:0
作者
Melegrito, Mark [1 ]
Reyes, Ryan [1 ]
Tejada, Ryan [2 ]
Anthony, John Edgar Sualog [3 ]
Alon, Alvin Sarraga [4 ]
Delmo, Ritchelie P. [5 ]
Enaldo, Meriam A. [5 ]
Anqui, Abrahem P. [5 ]
机构
[1] Technol Univ Philippines, Dept Elect Engn, Manila, Philippines
[2] Ifugao State Univ, Coll Comp Sci, Ifugao, Philippines
[3] Mindoro State Univ, Coll Comp Studies, Mindoro, Philippines
[4] Natl Res Council Philippines, Dept Sci & Technol, Taguig, Philippines
[5] Cebu Technol Univ, Coll Technol, Cebu, Philippines
来源
2024 4TH INTERNATIONAL CONFERENCE ON APPLIED ARTIFICIAL INTELLIGENCE, ICAPAI | 2024年
关键词
Accident Detection; Deep Learning; Machine Vision; Smart Transportation; YOLOv8;
D O I
10.1109/ICAPAI61893.2024.10541163
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper provides a deep learning-based method for traffic accident identification in smart transportation that is based on machine vision and uses the YOLOv8 architecture. The goal of the research is to precisely identify and localize accidentrelated factors to improve safety protocols and system efficiency in transportation. The YOLOv8 model performed exceptionally well using deep learning approaches, producing a mean Average Precision (mAP) of 94.4%, Precision of 91.6%, and Recall of 92.3%. The study focused on the testing and inference phases and thoroughly assessed the model's capabilities. High identification rates throughout testing across multiple scenarios showed how well the program could recognize accidents, including car crashes and non-accident scenes. The model's accuracy and dependability were highlighted by its capacity to identify non-accident scenarios without producing false positives. These encouraging results underline the YOLOv8 architecture's preparedness for implementation and show its potential to raise efficiency and safety standards in smart transportation networks greatly. This work represents a significant step forward in the field of machine vision-based accident detection and suggests future directions for improving real-time, accurate accident identification for more secure and effective transportation systems.
引用
收藏
页码:22 / 27
页数:6
相关论文
共 50 条
  • [31] On-machine dimensional inspection: machine vision-based approach
    Taatali, Abdelali
    Sadaoui, Sif Eddine
    Louar, Mohamed Abderaouf
    Mahiddini, Brahim
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 131 (01) : 393 - 407
  • [32] Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
    Liu, Lan
    Wang, Pengcheng
    Lin, Jun
    Liu, Langzhou
    IEEE ACCESS, 2021, 9 : 7550 - 7563
  • [33] Deep learning models for vision-based occupancy detection in high occupancy buildings
    Zhang, Wuxia
    Calautit, John
    Tien, Paige Wenbin
    Wu, Yupeng
    Wei, Shuangyu
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [34] Machine vision-based detection of surface defects in cylindrical battery cases
    Xie, Yuxi
    Xu, Xiang
    Liu, Shiyan
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [35] Benchmarking Deep Classifiers on Mobile Devices for Vision-based Transportation Recognition
    Richoz, Sebastien
    Perez-Uribe, Andres
    Birch, Philip
    Roggen, Daniel
    UBICOMP/ISWC'19 ADJUNCT: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2019, : 803 - 807
  • [36] Adaptive traffic light control using vision-based deep learning for vehicle density estimation
    Karoon, Weerasak
    Chuasuai, Peeranut
    Thipprasert, Pearploy
    Khongchu, Nachasa
    Kunakornjittirak, Piyaboon
    Siriborvornratanakul, Thitirat
    2024 6TH ASIA PACIFIC INFORMATION TECHNOLOGY CONFERENCE, APIT 2024, 2024, : 37 - 42
  • [37] Real-time detection of panoramic multitargets based on machine vision and deep learning
    Shen, Keyong
    Yang, Yang
    Zhang, Xiaoyu
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (05)
  • [38] Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning
    Zhang L.
    Chen Y.
    Xie S.
    Liu T.
    Binggong Xuebao/Acta Armamentarii, 2023, 44 (02): : 507 - 516
  • [39] Vision-Based Lane Detection Algorithm in Urban Traffic Scenes
    Ran, Feng
    Jiang, Zhoulong
    Xu, Meihua
    INTELLIGENT COMPUTING IN SMART GRID AND ELECTRICAL VEHICLES, 2014, 463 : 409 - 419
  • [40] Vision-based Obstacle Avoidance Using Deep Learning
    Gaya, Joel O.
    Goncalves, Lucas T.
    Duarte, Amanda C.
    Zanchetta, Breno
    Drews-, Paulo, Jr.
    Botelho, Silvia S. C.
    PROCEEDINGS OF 13TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 4TH BRAZILIAN SYMPOSIUM ON ROBOTICS - LARS/SBR 2016, 2016, : 7 - 12