Deep Learning Based Traffic Accident Detection in Smart Transportation: A Machine Vision-Based Approach

被引:0
作者
Melegrito, Mark [1 ]
Reyes, Ryan [1 ]
Tejada, Ryan [2 ]
Anthony, John Edgar Sualog [3 ]
Alon, Alvin Sarraga [4 ]
Delmo, Ritchelie P. [5 ]
Enaldo, Meriam A. [5 ]
Anqui, Abrahem P. [5 ]
机构
[1] Technol Univ Philippines, Dept Elect Engn, Manila, Philippines
[2] Ifugao State Univ, Coll Comp Sci, Ifugao, Philippines
[3] Mindoro State Univ, Coll Comp Studies, Mindoro, Philippines
[4] Natl Res Council Philippines, Dept Sci & Technol, Taguig, Philippines
[5] Cebu Technol Univ, Coll Technol, Cebu, Philippines
来源
2024 4TH INTERNATIONAL CONFERENCE ON APPLIED ARTIFICIAL INTELLIGENCE, ICAPAI | 2024年
关键词
Accident Detection; Deep Learning; Machine Vision; Smart Transportation; YOLOv8;
D O I
10.1109/ICAPAI61893.2024.10541163
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper provides a deep learning-based method for traffic accident identification in smart transportation that is based on machine vision and uses the YOLOv8 architecture. The goal of the research is to precisely identify and localize accidentrelated factors to improve safety protocols and system efficiency in transportation. The YOLOv8 model performed exceptionally well using deep learning approaches, producing a mean Average Precision (mAP) of 94.4%, Precision of 91.6%, and Recall of 92.3%. The study focused on the testing and inference phases and thoroughly assessed the model's capabilities. High identification rates throughout testing across multiple scenarios showed how well the program could recognize accidents, including car crashes and non-accident scenes. The model's accuracy and dependability were highlighted by its capacity to identify non-accident scenarios without producing false positives. These encouraging results underline the YOLOv8 architecture's preparedness for implementation and show its potential to raise efficiency and safety standards in smart transportation networks greatly. This work represents a significant step forward in the field of machine vision-based accident detection and suggests future directions for improving real-time, accurate accident identification for more secure and effective transportation systems.
引用
收藏
页码:22 / 27
页数:6
相关论文
共 50 条
  • [1] Smart City Transportation: Deep Learning Ensemble Approach for Traffic Accident Detection
    Adewopo, Victor A.
    Elsayed, Nelly
    IEEE ACCESS, 2024, 12 : 59134 - 59147
  • [2] Machine Vision-based Defect Detection Using Deep Learning Algorithm
    Kim, Dae-Hyun
    Boo, Seung Bin
    Hong, Hyeon Cheol
    Yeo, Won Gu
    Lee, Nam Yong
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2020, 40 (01) : 47 - 52
  • [3] Computer Vision-based Accident Detection in Traffic Surveillance
    Ijjina, Earnest Paul
    Chand, Dhananjai
    Gupta, Savyasachi
    Goutham, K.
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [4] A Deep Learning-based Approach for Vision-based Weeds Detection
    Wang, Yan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (12) : 75 - 82
  • [5] Vision-based real-time traffic accident detection
    Zu Hui
    Xie Yaohua
    Ma Lu
    Fu Jiansheng
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 1035 - 1038
  • [6] Machine learning based IoT system for secure traffic management and accident detection in smart cities
    Balasubramanian, Saravana Balaji
    Balaji, Prasanalakshmi
    Munshi, Asmaa
    Almukadi, Wafa
    Prabhu, T. N.
    Venkatachalam, K.
    Abouhawwash, Mohamed
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [7] A Machine Vision-based Realtime Anomaly Detection Method for Industrial Products Using Deep Learning
    Jiang, Yu
    Wang, Wei
    Zhao, Chunhui
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4842 - 4847
  • [8] Deep Learning and Vision-Based Early Drowning Detection
    Shatnawi, Maad
    Albreiki, Frdoos
    Alkhoori, Ashwaq
    Alhebshi, Mariam
    INFORMATION, 2023, 14 (01)
  • [9] Adaptive Deep Learning for a Vision-based Fall Detection
    Doulamis, Anastasios
    Doulamis, Nikolaos
    11TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2018), 2018, : 558 - 565
  • [10] VISION BASED ACCIDENT IDENTIFICATION IN TRAFFIC VIDEOS USING DEEP LEARNING
    Qamar, Tehreem
    Bawany, Narmeen Zakaria
    Shamsi, Jawwad Ahmed
    Zahoor, Kanwal
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 30 (06):