A Large-Scale Multi-Agent Deep Reinforcement Learning Method for Cooperative Output Voltage Control of PEMFCs

被引:7
作者
Li, Jiawen [1 ,2 ]
Cui, Haoyang [1 ]
Jiang, Wei [1 ]
Yu, Hengwen [3 ]
机构
[1] Shanghai Univ Elect Power, Sch Elect & Informat Engn, Shanghai 201306, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Elect Engn, Shanghai 200240, Peoples R China
[3] Shanghai Xinwei Semicond Co Ltd, Shanghai 201306, Peoples R China
来源
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION | 2024年 / 10卷 / 01期
基金
中国国家自然科学基金;
关键词
Voltage control; Hydrogen; Robustness; Heuristic algorithms; Valves; Transportation; Prediction algorithms; Champion multiagent double delay deep deterministic policy gradient (CMA-4DPG) algorithm; cooperative output voltage control; data-driven cooperative method; proton exchange membrane fuel cell (PEMFC); MODEL-PREDICTIVE CONTROL; FUEL-CELL SYSTEMS; PV SYSTEMS; ALGORITHM; TRACKING; DESIGN; MPPT;
D O I
10.1109/TTE.2023.3253060
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To increase the output voltage stability and improve the operating efficiency of proton exchange membrane fuel cells (PEMFCs), a data-driven cooperative method for controlling the PEMFC output voltage is proposed in this article. The proposed method adapts centralized learning and decentralized implementation, which can nonlinearly and adaptively realize optimal coordinated control over the hydrogen valve and the dc/dc converter. Additionally, a champion multiagent double delay deep deterministic policy gradient (CMA-4DPG) algorithm is proposed in this method, and the design of which incorporates the policies of the champion selection mechanism, cooperative exploration, imitation learning guidance, and curriculum guidance to improve the robustness of the cooperative method. The method cooperates with multiple controllers to prevent output voltage fluctuation. The experimental results show that by simultaneously regulating the hydrogen flow through the hydrogen valve and the duty ratio of the dc/dc converter, the proposed method achieves better robustness and can improve the tracking performance of the PEMFC output voltage.
引用
收藏
页码:78 / 94
页数:17
相关论文
共 37 条
[1]   Robust adaptive neural network control for PEM fuel cell [J].
Abbaspour, Alireza ;
Khalilnejad, Arash ;
Chen, Zheng .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (44) :20385-20395
[2]  
Alam M. S., 2005, P 16 IASTED INT C MO, P404
[3]   Control of PEM Fuel Cell Systems Using Interval Type-2 Fuzzy PID Approach [J].
Aliasghary, M. .
FUEL CELLS, 2018, 18 (04) :449-456
[4]   Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems [J].
Baroud, Zakaria ;
Benmiloud, Mohammed ;
Benalia, Atallah ;
Ocampo-Martinez, Carlos .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (15) :10435-10447
[5]   Control structure design and robust model predictive control for controlling a proton exchange membrane fuel cell [J].
Chatrattanawet, Narissara ;
Hakhen, Thanaphorn ;
Kheawhom, Soorathep ;
Arpornwichanop, Amornchai .
JOURNAL OF CLEANER PRODUCTION, 2017, 148 :934-947
[6]   Optima Oxygen Excess Ratio Control for PEM Fuel Cells [J].
Chen, Jian ;
Liu, Zhiyang ;
Wang, Fan ;
Ouyang, Quan ;
Su, Hongye .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (05) :1711-1721
[7]  
Fujimoto S, 2018, PR MACH LEARN RES, V80
[8]   Hybrid Model Predictive Control of the Step-Down DC-DC Converter [J].
Geyer, Tobias ;
Papafotiou, Georgios ;
Morari, Manfred .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2008, 16 (06) :1112-1124
[9]   An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers [J].
Hamamci, Serdar Ethem .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (10) :1964-1969
[10]   Dynamic neural network controller model of PEM fuel cell system [J].
Hatti, Mustapha ;
Tioursi, Mustapha .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (11) :5015-5021