Air-Stable High-Entropy Layered Oxide Cathode with Enhanced Cycling Stability for Sodium-Ion Batteries

被引:6
|
作者
Zhan, Jiajia [1 ]
Huang, Jiawen [1 ,3 ]
Li, Zhen [1 ]
Yuan, Jujun [2 ]
Dou, Shi-Xue [3 ,4 ]
Liu, Hua-Kun [3 ,4 ]
Wu, Chao [3 ,4 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Gannan Normal Univ, Coll Phys & Elect, Ganzhou 341000, Peoples R China
[3] Univ Shanghai Sci & Technol, Inst Energy Mat Sci IEMS, Shanghai 200093, Peoples R China
[4] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong, NSW 2522, Australia
基金
中国国家自然科学基金;
关键词
sodium-ion batteries; cathode materials; highentropy; layered transition metal oxides; cyclingstability; NA-ION; FUTURE; ANODE; COMPOSITE;
D O I
10.1021/acs.nanolett.4c00968
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
O3-type layered oxides have been extensively studied as cathode materials for sodium-ion batteries due to their high reversible capacity and high initial sodium content, but they suffer from complex phase transitions and an unstable structure during sodium intercalation/deintercalation. Herein, we synthesize a high-entropy O3-type layered transition metal oxide, NaNi0.3Cu0.05Fe0.1Mn0.3Mg0.05Ti0.2O2 (NCFMMT), by simultaneously doping Cu, Mg, and Ti into its transition metal layers, which greatly increase structural entropy, thereby reducing formation energy and enhancing structural stability. The high-entropy NCFMMT cathode exhibits significantly improved cycling stability (capacity retention of 81.4% at 1C after 250 cycles and 86.8% at 5C after 500 cycles) compared to pristine NaNi0.3Fe0.4Mn0.3O2 (71% after 100 cycles at 1C), as well as remarkable air stability. Finally, the NCFMMT//hard carbon full-cell batteries deliver a high initial capacity of 103 mAh g(-1) at 1C, with 83.8 mAh g(-1) maintained after 300 cycles (capacity retention of 81.4%).
引用
收藏
页码:9793 / 9800
页数:8
相关论文
共 50 条
  • [41] A novel garnet-type high-entropy oxide as air-stable solid electrolyte for Li-ion batteries
    Kuo, Chun-Han
    Wang, Ai-Yin
    Liu, Hao-Yu
    Huang, Shao-Chu
    Chen, Xiang-Rong
    Chi, Chong-Chi
    Chang, Yu-Chung
    Lu, Ming-Yen
    Chen, Han-Yi
    APL MATERIALS, 2022, 10 (12)
  • [42] Recent progress on layered oxide cathode materials for sodium-ion batteries
    Jian X.-Y.
    Jin J.-T.
    Wang Y.
    Shen Q.-Y.
    Liu Y.-C.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (04): : 601 - 611
  • [43] A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery
    Xiao, Yao
    Zhu, Yon-Fong
    Yao, Hu-Rong
    Wang, Peng-Fei
    Zhang, Xu-Dong
    Li, Hongliang
    Yang, Xinan
    Gu, Lin
    Li, Yong-Chun
    Wang, Tao
    Yin, Ya-Xia
    Guo, Xiao-Dong
    Zhong, Ben-He
    Guo, Yu-Guo
    ADVANCED ENERGY MATERIALS, 2019, 9 (19)
  • [44] A Superlattice-Stabilized Layered Oxide Cathode for Sodium-Ion Batteries
    Li, Qi
    Xu, Sheng
    Guo, Shaohua
    Jiang, Kezhu
    Li, Xiang
    Jia, Min
    Wang, Peng
    Zhou, Haoshen
    ADVANCED MATERIALS, 2020, 32 (23)
  • [45] High-voltage stabilized high-entropy oxyfluoride cathode for high-rate sodium-ion batteries
    He, Li
    Feng, Tao
    Wu, Qingqing
    Cao, Yang
    Song, Fangxiang
    RARE METALS, 2025,
  • [46] High-entropy Li-rich layered oxide cathode for Li-ion batteries
    Kim, Jaemin
    Yang, Songge
    Zhong, Yu
    Tompsett, Geoffrey
    Jeong, Seonghun
    Mun, Junyoung
    Sunariwal, Neelam
    Cabana, Jordi
    Yang, Zhenzhen
    Wang, Yan
    JOURNAL OF POWER SOURCES, 2025, 628
  • [47] Environmentally stable interface of layered oxide cathodes for sodium-ion batteries
    Shaohua Guo
    Qi Li
    Pan Liu
    Mingwei Chen
    Haoshen Zhou
    Nature Communications, 8
  • [48] Environmentally stable interface of layered oxide cathodes for sodium-ion batteries
    Guo, Shaohua
    Li, Qi
    Liu, Pan
    Chen, Mingwei
    Zhou, Haoshen
    NATURE COMMUNICATIONS, 2017, 8
  • [49] Progress and Perspective of High-Entropy Strategy Applied in Layered Transition Metal Oxide Cathode Materials for High-Energy and Long Cycle Life Sodium-Ion Batteries
    Wang, Lei
    Wang, Leilei
    Wang, Haichao
    Dong, Hanghang
    Sun, Weiwei
    Lv, Li-Ping
    Yang, Chao
    Xiao, Yao
    Wu, Feixiang
    Wang, Yong
    Chou, Shulei
    Sun, Bing
    Wang, Guoxiu
    Chen, Shuangqiang
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (11)
  • [50] Unveiling the Origin of Air Stability in Polyanion and Layered-Oxide Cathode Materials for Sodium-Ion Batteries and Their Practical Application Considerations
    Yang, Huiya
    Zhang, Qing
    Chen, Minghui
    Yang, Yang
    Zhao, Jinbao
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (03)