Thermal runaway behaviors of lithium-ion battery for electric vehicles: Experimental and modeling studies with realistic applications to a battery pack

被引:8
作者
Wu, Jun [1 ,2 ,3 ,4 ]
Zhang, Xiong [4 ]
Chen, Hu [4 ]
Guo, Wei [1 ,2 ,3 ,5 ]
Yao, Jian [6 ]
Wei, Dan [4 ]
Zhu, Linpei [4 ]
Ouyang, Chenzhi [4 ]
Wang, Qingquan [4 ]
Hu, Qianqian [4 ]
Jin, Changyong [6 ]
Xu, Chengshan [6 ]
Feng, Xuning [6 ]
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Hubei Collaborat Innovat Ctr Automot Components Te, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, Sch Automot Engn, Wuhan 430070, Peoples R China
[4] GAC AION New Energy Automobile Co Ltd, Guangzhou 511434, Peoples R China
[5] Wuhan Univ Technol, Inst Adv Mat & Mfg Technol, Wuhan 430070, Peoples R China
[6] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal runaway; Battery thermal management; Accelerating rate calorimetry; Lithium -ion battery; Electric vehicle; ACCELERATING RATE CALORIMETRY; INTERCALATED GRAPHITE; ABUSE BEHAVIOR; PROPAGATION; MODULE; ENERGY; STABILITY; MECHANISM;
D O I
10.1016/j.est.2024.111543
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance of lithium-ion battery is characterized by cost, energy density, fast charging capability and so on. Among them, the most important one is the thermal safety behavior. This research systematically investigate the thermal runaway (TR) behaviors of lithium-ion battery for electric vehicles, from battery cell to battery module and ultimately to battery pack. Firstly, a TR model is proposed based on the experimental result from accelerating rate calorimetry (ARC). Then, the parameters of the TR model are calibrated in a battery cell subjected to side heating. Furthermore, the validation of the TR model is carried out by a battery module in terms of max temperature, triggering time and the time interval in the analysis of TR propagation. The agreement between experimental and modeling results shows the effectiveness of the proposed model. The TR model is further extended to a battery pack to investigate TR propagation behaviors with the consideration of realistic operating conditions. The modeling results reveal that the fast charging and uphill driving have an important impact on TR propagation behaviors. The proposed TR model along with realistic operating conditions provides unique design guidelines for battery module and pack with the characteristic of non-TR propagation in the early stage of design.
引用
收藏
页数:13
相关论文
共 45 条
[11]   Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode [J].
Huang, Peifeng ;
Ping, Ping ;
Li, Ke ;
Chen, Haodong ;
Wang, Qingsong ;
Wen, Jennifer ;
Sun, Jinhua .
APPLIED ENERGY, 2016, 183 :659-673
[12]   Thermal characteristics of lithium ion secondary cells in high temperature environments using an accelerating rate calorimeter [J].
Ishikawa, Hiroaki ;
Mendoza, Omar ;
Nishikawa, Yuuki ;
Maruyama, Yuki ;
Umeda, Minoru .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2013, 5 (04)
[13]   No thermal runaway propagation optimization design of battery arrangement for cell-to-chassis technology [J].
Jin, Changyong ;
Sun, Yuedong ;
Yao, Jian ;
Feng, Xuning ;
Lai, Xin ;
Shen, Kai ;
Wang, Huaibin ;
Rui, Xinyu ;
Xu, Chengshan ;
Zheng, Yuejiu ;
Lu, Languang ;
Wang, Hewu ;
Ouyang, Minggao .
ETRANSPORTATION, 2022, 14
[14]   Model and experiments to investigate thermal runaway characterization of lithium-ion batteries induced by external heating method [J].
Jin, Changyong ;
Sun, Yuedong ;
Wang, Huaibin ;
Lai, Xin ;
Wang, Shuyu ;
Chen, Siqi ;
Rui, Xinyu ;
Zheng, Yuejiu ;
Feng, Xuning ;
Wang, Hewu ;
Ouyang, Minggao .
JOURNAL OF POWER SOURCES, 2021, 504
[15]   A three-dimensional thermal abuse model for lithium-ion cells [J].
Kim, Gi-Heon ;
Pesaran, Ahmad ;
Spotnitz, Robert .
JOURNAL OF POWER SOURCES, 2007, 170 (02) :476-489
[16]   Foreign matter defect battery and sudden spontaneous combustion [J].
Kong, Xiangdong ;
Lu, Languang ;
Yuan, Yuebo ;
Sun, Yukun ;
Feng, Xuning ;
Yang, Hongxin ;
Zhang, Fangnan ;
Zhang, Jianbiao ;
Liu, Xiaoan ;
Han, Xuebing ;
Zheng, Yuejiu ;
Ouyang, Minggao .
ETRANSPORTATION, 2022, 12
[17]   Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes [J].
Lai, Xin ;
Wang, Shuyu ;
Wang, Huaibin ;
Zheng, Yuejiu ;
Feng, Xuning .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 171
[18]   Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives [J].
Lai, Xin ;
Jin, Changyong ;
Yi, Wei ;
Han, Xuebing ;
Feng, Xuning ;
Zheng, Yuejiu ;
Ouyang, Minggao .
ENERGY STORAGE MATERIALS, 2021, 35 :470-499
[19]   Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode [J].
Li, Huang ;
Duan, Qiangling ;
Zhao, Chunpeng ;
Huang, Zonghou ;
Wang, Qingsong .
JOURNAL OF HAZARDOUS MATERIALS, 2019, 375 :241-254
[20]   Numerical investigation of thermal runaway propagation in a Li-ion battery module using the heat pipe cooling system [J].
Li, Yuan ;
Qi, Fei ;
Guo, Hao ;
Guo, Zhiping ;
Xu, Gang ;
Liu, Jiang .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2019, 75 (03) :183-199