Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures

被引:4
|
作者
Cheng, Tiantian [1 ,2 ]
Meng, Yuxin [1 ,2 ]
Luo, Man [1 ,2 ,3 ,4 ]
Xian, Jiachi [1 ,2 ]
Luo, Wenjin [5 ,6 ]
Wang, Weijun [3 ,4 ]
Yue, Fangyu [7 ]
Ho, Johnny C. [3 ,4 ]
Yu, Chenhui [1 ,2 ]
Chu, Junhao [7 ]
机构
[1] Nantong Univ, Sch Microelect, Nantong 226019, Peoples R China
[2] Nantong Univ, Sch Integrated Circuits, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
[3] City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong 999077, Peoples R China
[4] City Univ Hong Kong, State Key Lab Terahertz & Millimeter Waves, Hong Kong 999077, Peoples R China
[5] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[6] Univ Colorado, JILA, Boulder, CO 80309 USA
[7] East China Normal Univ, Sch Phys & Elect Sci, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
2D materials; device; electronic; indium arsenide; van der Waals heterostructure; DENSITY-FUNCTIONAL THEORY; INAS NANOWIRES; EPITAXIAL-GROWTH; REMOTE EPITAXY; 1ST-PRINCIPLES CALCULATIONS; PHASE-TRANSITION; GAAS NANOWIRES; BORON-NITRIDE; GRAPHENE; PHOTODETECTORS;
D O I
10.1002/smll.202403129
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The strategic integration of low-dimensional InAs-based materials and emerging van der Waals systems is advancing in various scientific fields, including electronics, optics, and magnetics. With their unique properties, these InAs-based van der Waals materials and devices promise further miniaturization of semiconductor devices in line with Moore's Law. However, progress in this area lags behind other 2D materials like graphene and boron nitride. Challenges include synthesizing pure crystalline phase InAs nanostructures and single-atomic-layer 2D InAs films, both vital for advanced van der Waals heterostructures. Also, diverse surface state effects on InAs-based van der Waals devices complicate their performance evaluation. This review discusses the experimental advances in the van der Waals epitaxy of InAs-based materials and the working principles of InAs-based van der Waals devices. Theoretical achievements in understanding and guiding the design of InAs-based van der Waals systems are highlighted. Focusing on advancing novel selective area growth and remote epitaxy, exploring multi-functional applications, and incorporating deep learning into first-principles calculations are proposed. These initiatives aim to overcome existing bottlenecks and accelerate transformative advancements in integrating InAs and van der Waals heterostructures. Integrating low-dimensional InAs-based materials with van der Waals systems advances electronics, optics, and magnetics, promoting miniaturization per Moore's Law. However, progress lags due to synthesis challenges and surface state effects. This review addresses experimental advances in the vdW epitaxy of InAs, theoretical system design achievements, and proposes novel growth techniques and deep learning integration to overcome bottlenecks. image
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Fabrication and applications of van der Waals heterostructures
    Qi, Junlei
    Wu, Zongxiao
    Wang, Wenbin
    Bao, Kai
    Wang, Lingzhi
    Wu, Jingkun
    Ke, Chengxuan
    Xu, Yue
    He, Qiyuan
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (02)
  • [32] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    Science China(Physics,Mechanics & Astronomy), 2019, Mechanics & Astronomy)2019 (03) : 106 - 111
  • [33] Interfaces and heterostructures of van der Waals materials
    Asensio, Maria C.
    Batzill, Matthias
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (49)
  • [34] Ultrafast dynamics in van der Waals heterostructures
    Chenhao Jin
    Eric Yue Ma
    Ouri Karni
    Emma C. Regan
    Feng Wang
    Tony F. Heinz
    Nature Nanotechnology, 2018, 13 : 994 - 1003
  • [35] Picosecond photoresponse in van der Waals heterostructures
    Massicotte M.
    Schmidt P.
    Vialla F.
    Schädler K.G.
    Reserbat-Plantey A.
    Watanabe K.
    Taniguchi T.
    Tielrooij K.J.
    Koppens F.H.L.
    Nature Nanotechnology, 2016, 11 (1) : 42 - 46
  • [36] Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities
    Liang, Shi-Jun
    Cheng, Bin
    Cui, Xinyi
    Miao, Feng
    ADVANCED MATERIALS, 2020, 32 (27)
  • [37] Optically Active MXenes in Van der Waals Heterostructures
    Purbayanto, Muhammad A. K.
    Chandel, Madhurya
    Birowska, Magdalena
    Rosenkranz, Andreas
    Jastrzebska, Agnieszka M.
    ADVANCED MATERIALS, 2023, 35 (42)
  • [38] Unfolding the band structure of van der Waals heterostructures
    Vailakis, Georgios
    Kopidakis, Georgios
    PHYSICAL REVIEW MATERIALS, 2023, 7 (02)
  • [39] Evidence for moire excitons in van der Waals heterostructures
    Kha Tran
    Moody, Galan
    Wu, Fengcheng
    Lu, Xiaobo
    Choi, Junho
    Kim, Kyounghwan
    Rai, Amritesh
    Sanchez, Daniel A.
    Quan, Jiamin
    Singh, Akshay
    Embley, Jacob
    Zepeda, Andre
    Campbell, Marshall
    Autry, Travis
    Taniguchi, Takashi
    Watanabe, Kenji
    Lu, Nanshu
    Banerjee, Sanjay K.
    Silverman, Kevin L.
    Kim, Suenne
    Tutuc, Emanuel
    Yang, Li
    MacDonald, Allan H.
    Li, Xiaoqin
    NATURE, 2019, 567 (7746) : 71 - +
  • [40] Fabrication of van der Waals heterostructures through direct growth of rhenium disulfide on van der Waals surfaces
    Jeon, Jaeho
    Choi, Haeju
    Baek, Sungpyo
    Choi, Seunghyuk
    Cho, Jeong Ho
    Lee, Sungjoo
    APPLIED SURFACE SCIENCE, 2021, 544