Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures

被引:4
|
作者
Cheng, Tiantian [1 ,2 ]
Meng, Yuxin [1 ,2 ]
Luo, Man [1 ,2 ,3 ,4 ]
Xian, Jiachi [1 ,2 ]
Luo, Wenjin [5 ,6 ]
Wang, Weijun [3 ,4 ]
Yue, Fangyu [7 ]
Ho, Johnny C. [3 ,4 ]
Yu, Chenhui [1 ,2 ]
Chu, Junhao [7 ]
机构
[1] Nantong Univ, Sch Microelect, Nantong 226019, Peoples R China
[2] Nantong Univ, Sch Integrated Circuits, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
[3] City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong 999077, Peoples R China
[4] City Univ Hong Kong, State Key Lab Terahertz & Millimeter Waves, Hong Kong 999077, Peoples R China
[5] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[6] Univ Colorado, JILA, Boulder, CO 80309 USA
[7] East China Normal Univ, Sch Phys & Elect Sci, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
2D materials; device; electronic; indium arsenide; van der Waals heterostructure; DENSITY-FUNCTIONAL THEORY; INAS NANOWIRES; EPITAXIAL-GROWTH; REMOTE EPITAXY; 1ST-PRINCIPLES CALCULATIONS; PHASE-TRANSITION; GAAS NANOWIRES; BORON-NITRIDE; GRAPHENE; PHOTODETECTORS;
D O I
10.1002/smll.202403129
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The strategic integration of low-dimensional InAs-based materials and emerging van der Waals systems is advancing in various scientific fields, including electronics, optics, and magnetics. With their unique properties, these InAs-based van der Waals materials and devices promise further miniaturization of semiconductor devices in line with Moore's Law. However, progress in this area lags behind other 2D materials like graphene and boron nitride. Challenges include synthesizing pure crystalline phase InAs nanostructures and single-atomic-layer 2D InAs films, both vital for advanced van der Waals heterostructures. Also, diverse surface state effects on InAs-based van der Waals devices complicate their performance evaluation. This review discusses the experimental advances in the van der Waals epitaxy of InAs-based materials and the working principles of InAs-based van der Waals devices. Theoretical achievements in understanding and guiding the design of InAs-based van der Waals systems are highlighted. Focusing on advancing novel selective area growth and remote epitaxy, exploring multi-functional applications, and incorporating deep learning into first-principles calculations are proposed. These initiatives aim to overcome existing bottlenecks and accelerate transformative advancements in integrating InAs and van der Waals heterostructures. Integrating low-dimensional InAs-based materials with van der Waals systems advances electronics, optics, and magnetics, promoting miniaturization per Moore's Law. However, progress lags due to synthesis challenges and surface state effects. This review addresses experimental advances in the vdW epitaxy of InAs, theoretical system design achievements, and proposes novel growth techniques and deep learning integration to overcome bottlenecks. image
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Thermal response in van der Waals heterostructures
    Gandi, Appala Naidu
    Alshareef, Husam N.
    Schwingenschlogl, Udo
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (03)
  • [22] Multiferroicity in atomic van der Waals heterostructures
    Cheng Gong
    Eun Mi Kim
    Yuan Wang
    Geunsik Lee
    Xiang Zhang
    Nature Communications, 10
  • [23] Picosecond photoresponse in van der Waals heterostructures
    Massicotte, M.
    Schmidt, P.
    Vialla, F.
    Schaedler, K. G.
    Reserbat-Plantey, A.
    Watanabe, K.
    Taniguchi, T.
    Tielrooij, K. J.
    Koppens, F. H. L.
    NATURE NANOTECHNOLOGY, 2016, 11 (01) : 42 - +
  • [24] Devices and applications of van der Waals heterostructures
    Chao Li
    Peng Zhou
    David Wei Zhang
    Journal of Semiconductors, 2017, 38 (03) : 48 - 56
  • [25] Strain engineering of van der Waals heterostructures
    Vermeulen, Paul A.
    Mulder, Jefta
    Momand, Jamo
    Kooi, Bart J.
    NANOSCALE, 2018, 10 (03) : 1474 - 1480
  • [26] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [27] Dielectric Genome of van der Waals Heterostructures
    Andersen, Kirsten
    Latini, Simone
    Thygesen, Kristian S.
    NANO LETTERS, 2015, 15 (07) : 4616 - 4621
  • [28] Exciton landscape in van der Waals heterostructures
    Hagel, Joakim
    Brem, Samuel
    Linderalv, Christopher
    Erhart, Paul
    Malic, Ermin
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [29] Multiferroicity in atomic van der Waals heterostructures
    Gong, Cheng
    Kim, Eun Mi
    Wang, Yuan
    Lee, Geunsik
    Zhang, Xiang
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [30] Quantum microscopy with van der Waals heterostructures
    Healey, A. J.
    Scholten, S. C.
    Yang, T.
    Scott, J. A.
    Abrahams, G. J.
    Robertson, I. O.
    Hou, X. F.
    Guo, Y. F.
    Rahman, S.
    Lu, Y.
    Kianinia, M.
    Aharonovich, I
    Tetienne, J-P
    NATURE PHYSICS, 2023, 19 (01) : 87 - +