The multigrid discretization of mixed discontinuous Galerkin method for the biharmonic eigenvalue problem

被引:0
作者
Feng, Jinhua [1 ]
Wang, Shixi [1 ]
Bi, Hai [1 ]
Yang, Yidu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang, Peoples R China
基金
中国国家自然科学基金;
关键词
adaptive computation; biharmonic eigenvalue; error estimates; mixed discontinuous Galerkin method; multigrid discretization; FINITE-ELEMENT-METHOD; 2-GRID DISCRETIZATION; ORDER CONVERGENCE; APPROXIMATION; SCHEME;
D O I
10.1002/mma.10455
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Ciarlet-Raviart mixed method is popular for the biharmonic equations/eigenvalue problem. In this paper, we propose a multigrid discretization based on the shifted-inverse iteration of Ciarlet-Raviart mixed discontinuous Galerkin method for the biharmonic eigenvalue problem. We prove the a priori error estimates of the approximate eigenpairs. We also give the a posteriori error estimates of the approximate eigenvalues and prove the reliability of the estimator and implement adaptive computation. Numerical experiments show that our method can efficiently compute biharmonic eigenvalues.
引用
收藏
页码:2635 / 2654
页数:20
相关论文
共 49 条
  • [1] Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems
    Andreev, AB
    Lazarov, RD
    Racheva, MR
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (02) : 333 - 349
  • [2] [Anonymous], 1991, Handbook of Numerical Analysis
  • [3] Discontinuous Galerkin approximation of the Laplace eigenproblem
    Antonietti, Paola F.
    Buffa, Annalisa
    Perugia, Ilaria
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) : 3483 - 3503
  • [4] Antonio D., 2012, MATH ASPECTS DISCONT
  • [5] ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) : 736 - 754
  • [6] BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
  • [7] High precision solutions of two fourth order eigenvalue problems
    Bjorstad, PE
    Tjostheim, BP
    [J]. COMPUTING, 1999, 63 (02) : 97 - 107
  • [8] C0 Interior Penalty Galerkin Method for Biharmonic Eigenvalue Problems
    Brenner, Susanne C.
    Monk, Peter
    Sun, Jiguang
    [J]. SPECTRAL AND HIGH ORDER METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS ICOSAHOM 2014, 2015, 106 : 3 - 15
  • [9] C0 Interior Penalty Methods
    Brenner, Susanne C.
    [J]. FRONTIERS IN NUMERICAL ANALYSIS - DURHAM 2010, 2012, 85 : 78 - 146
  • [10] Discontinuous Galerkin approximation of the Maxwell eigenproblem
    Buffa, Annalisa
    Perugia, Ilaria
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) : 2198 - 2226