Data to science: an open-source online platform for managing, visualizing, and publishing UAS data

被引:0
作者
Jung, Jinha [1 ]
Fei, Songlin [2 ]
Tuinstra, Mitch [3 ]
Yang, Yang [4 ]
Wang, Diane [3 ]
Song, Carol [5 ]
Gillan, Jeffrey [6 ]
Bhandari, Mahendra [7 ]
Ibrahim, Amir [8 ]
Zhao, Lan [5 ]
Swetnam, Tyson [6 ]
Barker, Bryan
Jung, Minyoung [1 ]
Hancock, Ben [1 ]
机构
[1] Purdue Univ, Lyles Sch Civil Engn, 550 W Stadium Ave, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Forestry & Nat Resources, 715 W State St, W Lafayette, IN 47907 USA
[3] Purdue Univ, Dept Agron, 915 W State St, W Lafayette, IN 47907 USA
[4] Purdue Univ, Inst Plant Sci, 915 W State St, W Lafayette, IN 47907 USA
[5] Purdue Univ, Rosen Ctr Adv Comp, 101 Foundry Dr, W Lafayette, IN 47906 USA
[6] Univ Arizona, Inst BIO5, 1657 E Helen St, Tucson, AZ 85719 USA
[7] Texas A&M AgriLife Res, Soil & Crop Sci, Corpus Christi, TX USA
[8] Texas A&M Univ, Heep Ctr, Dept Soil & Crop Sci, 370 Olsen Blvd, College Stn, TX 77843 USA
来源
AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING IX | 2024年 / 13053卷
基金
美国食品与农业研究所;
关键词
Unoccupied Aircraft System (UAS); High Throughput Phenotyping (HTP); Big Data; FAIR Principle; Open Data Science;
D O I
10.1117/12.3021199
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Recent advancements in sensor technologies make it possible to collect fine spatial and high temporal resolution remote sensing data and automatically extract informative features in a high throughput mode. As researchers increasingly have access to tools to collect big data, such as Unmanned Aerial Vehicles (UAV) and Controlled Environment Phenotyping Facility (CEPF), there is a need for generating quantitative phenotypic from the collected geospatial data. While precision agriculture technology aims to protect our environment and produce enough food to feed a growing population, the massive volume of geospatial data generated by the research scientists and the lack of software packages customized for processing these data make it challenging to develop transdisciplinary research collaboration around this data. We will share our efforts to develop an open-source online platform for UAS HTP data management to address the big data challenges.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Online Big Data as a source of analytic information in online research
    Korytnikova, N. V.
    [J]. SOTSIOLOGICHESKIE ISSLEDOVANIYA, 2015, (08): : 14 - +
  • [32] Multi-dimensional and Customizable Open-Source Labware for Promoting Big Data Analytical Skills in STEM Education
    Xie, Ying
    Qian, Kai
    He, Jing
    [J]. 2016 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE), 2016,
  • [33] The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services
    Avesani, Paolo
    McPherson, Brent
    Hayashi, Soichi
    Caiafa, Cesar F.
    Henschel, Robert
    Garyfallidis, Eleftherios
    Kitchell, Lindsey
    Bullock, Daniel
    Patterson, Andrew
    Olivetti, Emanuele
    Sporns, Olaf
    Saykin, Andrew J.
    Wang, Lei
    Dinov, Ivo
    Hancock, David
    Caron, Bradley
    Qian, Yiming
    Pestilli, Franco
    [J]. SCIENTIFIC DATA, 2019, 6 (1)
  • [34] Open Source Big Data Analytics Technique
    Sharma, Ishan
    Tiwari, Rajeev
    Anand, Abhineet
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DATA ENGINEERING AND COMMUNICATION TECHNOLOGY, ICDECT 2016, VOL 1, 2017, 468 : 593 - 602
  • [35] Advanced Multitenant Hadoop in Smart Open Data Platform
    Minh Chau Nguyen
    Won, Hee Sun
    [J]. INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS (BDIOT 2017), 2017, : 48 - 51
  • [36] GATECloud.net: a platform for large-scale, open-source text processing on the cloud
    Tablan, Valentin
    Roberts, Ian
    Cunningham, Hamish
    Bontcheva, Kalina
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1983):
  • [37] Big Data Open Platform For Water Resources Management
    Chalh, Ridouane
    Bakkoury, Zohra
    Ouazar, Driss
    Hasnaoui, Moulay Driss
    [J]. 2015 INTERNATIONAL CONFERENCE ON CLOUD TECHNOLOGIES AND APPLICATIONS (CLOUDTECH 15), 2015, : 67 - 74
  • [38] L-Heron: An open-source load-aware online scheduler for Apache Heron
    Zhang, Yitian
    Yu, Jiong
    Lu, Liang
    Li, Ziyang
    Meng, Zhao
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 2020, 106 (106)
  • [39] Evaluating the Open Source Data Containers for Handling Big Geospatial Raster Data
    Hu, Fei
    Xu, Mengchao
    Yang, Jingchao
    Liang, Yanshou
    Cui, Kejin
    Little, Michael M.
    Lynnes, Christopher S.
    Duffy, Daniel Q.
    Yang, Chaowei
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (04):
  • [40] Data Science for Industry 4.0 and Sustainability: A Survey and Analysis Based on Open Data
    Castro, Helio
    Costa, Filipe
    Ferreira, Tania
    avila, Paulo
    Cruz-Cunha, Manuela
    Ferreira, Luis
    Putnik, Goran D.
    Bastos, Joao
    [J]. MACHINES, 2023, 11 (04)