Well-posedness for a molecular beam epitaxy model

被引:0
|
作者
Emerald, Louis [1 ]
da Silva, Daniel Oliveira [2 ]
Tesfahun, Achenef [1 ]
机构
[1] Nazarbayev Univ, Dept Math, Qabanbai Batyr Ave 53, Nur Sultan 010000, Kazakhstan
[2] Calif State Univ Los Angeles, Dept Math, 5151 State Univ Dr, Los Angeles, CA 90032 USA
关键词
Molecular beam epitaxy; Well-posedness; Stochastic MBE; GROWTH;
D O I
10.1016/j.jmaa.2024.128617
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a general molecular beam epitaxy (MBE) equation modeling the epitaxial growth of thin films. We show that, in the deterministic case, the associated Cauchy problem admits a unique smooth solution for all time, given initial data in the space X-0 = L-2(R-d) boolean AND W-center dot(1,4)(R-d) with d = 1, 2. This improves a recent result by Ag & eacute;las [1], who established global existence in H-3(R-d). Moreover, we investigate the local existence and uniqueness of solutions in the space X0 for the stochastic MBE equation, with an additive noise that is white in time and regular in the space variable. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:19
相关论文
共 50 条
  • [21] WELL-POSEDNESS AND DISSIPATIVITY FOR A MODEL OF BACTERIOPHAGE AND BACTERIA IN A FLOW REACTOR
    Smith, Hal L.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (02) : 597 - 613
  • [22] Well-posedness analysis of the Cahn-Hilliard-Biot model
    Riethmueller, Cedric
    Storvik, Erlend
    Both, Jakub Wiktor
    Radu, Florin Adrian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 84
  • [23] WELL-POSEDNESS OF A PARABOLIC INVERSE PROBLEM
    喻文焕
    Acta Mathematicae Applicatae Sinica, 1997, (03) : 329 - 336
  • [24] Well-posedness for Hall-magnetohydrodynamics
    Chae, Dongho
    Degond, Pierre
    Liu, Jian-Guo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03): : 555 - 565
  • [25] Well-posedness for vector equilibrium problems
    Bianchi, M.
    Kassay, G.
    Pini, R.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2009, 70 (01) : 171 - 182
  • [26] Well-posedness of fractional parabolic equations
    Ashyralyev, Allaberen
    BOUNDARY VALUE PROBLEMS, 2013, : 1 - 18
  • [27] Well-posedness of a parabolic inverse problem
    Yu W.
    Acta Mathematicae Applicatae Sinica, 1997, 13 (3) : 329 - 336
  • [28] Global well-posedness for the lake equations
    Levermore, CD
    Oliver, M
    Titi, ES
    PHYSICA D, 1996, 98 (2-4): : 492 - 509
  • [29] Well-posedness of equations with fractional derivative
    Bu, Shang Quan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (07) : 1223 - 1232
  • [30] Well-posedness for vector equilibrium problems
    M. Bianchi
    G. Kassay
    R. Pini
    Mathematical Methods of Operations Research, 2009, 70 : 171 - 182