Impact of electron beam welding on the microstructure of PM2000 ODS steel

被引:2
作者
Dawson, H. [1 ,4 ]
Hughes, J. [2 ]
Jimenez-Melero, E. [2 ,3 ]
机构
[1] UKAEA, Mat Business Unit, Abingdon OX14 3DB, England
[2] Univ Manchester, Dept Mat, Manchester M13 9PL, England
[3] Univ Birmingham, Sch Met & Mat, Birmingham B15 2TT, England
[4] Frazer Nash Consultancy, Cheltenham Rd East, Gloucester GL3 1JZ, England
基金
英国工程与自然科学研究理事会;
关键词
Oxide dispersion-strengthened steel; Electron beam welding; Microstructural characterization; Electron microscopy; Microhardness mapping; FERRITIC-MARTENSITIC STEEL; MECHANICAL-PROPERTIES; OXIDE PARTICLES; GRAIN-GROWTH; RECRYSTALLIZATION; EVOLUTION; DEFORMATION; RESISTANCE; CORROSION; TENSILE;
D O I
10.1016/j.fusengdes.2024.114528
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This work investigated the impact of electron beam (EB) welding, using various traverse speeds of the electron beam (1200-2200 mm/min), on the microstructure of PM2000 ODS steel which was characterized using analytical electron microscopy and microhardness. The different heat inputs during welding explored in this study (72-39 J/mm), related to the traverse speed used, correlated with small differences in the widths of the fusion zone. Only minor differences in local microstructures and hardness of the fusion zones were detected amongst the four butt welds produced. The fusion zone is characterized by large columnar grains in the ferritic matrix, together with a coarsened Y-Al-O particle distribution and a reduction in its particle number density as compared to the base material. There is also a sharp border between the fusion zone and base material, with the joint showing little evidence of a heat-affected zone. These changes in microstructure during welding led to a hardness reduction of -30 % in the fusion zone of the welds with respect to the base material.
引用
收藏
页数:16
相关论文
共 86 条
[71]   Development of castable nanostructured alloys as a new generation RAFM steels [J].
Tan, L. ;
Katoh, Y. ;
Snead, L. L. .
JOURNAL OF NUCLEAR MATERIALS, 2018, 511 :598-604
[72]   Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket [J].
Tanigawa, H. ;
Shiba, K. ;
Moeslang, A. ;
Stoller, R. E. ;
Lindau, R. ;
Sokolov, M. A. ;
Odette, G. R. ;
Kurtz, R. J. ;
Jitsukawa, S. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 417 (1-3) :9-15
[73]   Current status and recent research achievements in ferritic/martensitic steels [J].
Tavassoli, A. -A. F. ;
Diegele, E. ;
Lindau, R. ;
Luzginova, N. ;
Tanigawa, H. .
JOURNAL OF NUCLEAR MATERIALS, 2014, 455 (1-3) :269-276
[74]   Advanced oxidation-resistant iron-based alloys for LWR fuel cladding [J].
Terrani, K. A. ;
Zinkle, S. J. ;
Snead, L. L. .
JOURNAL OF NUCLEAR MATERIALS, 2014, 448 (1-3) :420-435
[75]  
thermofisher, TEM imaging | transmission electron microscopy - UK
[76]   Effect of residual stress on recrystallization behavior of mechanically alloyed steels [J].
Toda-Caraballo, I. ;
Chao, J. ;
Lindgren, L. E. ;
Capdevila, C. .
SCRIPTA MATERIALIA, 2010, 62 (01) :41-44
[77]  
Ukai S, 2017, WOODHEAD PUBL SER EN, P357, DOI 10.1016/B978-0-08-100906-2.00010-0
[78]  
Wright I.G., 2009, ORNL report
[79]   Phase stability of oxide dispersion-strengthened ferritic steels in neutron irradiation [J].
Yamashita, S ;
Oka, K ;
Ohnuki, S ;
Akasaka, N ;
Ukai, S .
JOURNAL OF NUCLEAR MATERIALS, 2002, 307 (1 SUPPL.) :283-288
[80]  
Yardley V.A., 2003, THESIS U CAMBRIDGE