PARAMETRIC GENERALIZATION OF THE MODIFIED BERNSTEIN-KANTOROVICH OPERATORS

被引:0
作者
Kanat, Kadir [1 ]
Sofyalioglu, Melek [1 ]
Erdal, Selin [1 ]
机构
[1] Ankara Haci Bayram Veli Univ, Dept Math, Ankara, Turkiye
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2024年 / 73卷 / 02期
关键词
Bernstein-Kantorovich operators; Peetre- K functional; modulus of continuity; Lipschitz class;
D O I
10.31801/cfsuasmas.1338789
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the current article, a parametrization of the modified BernsteinKantorovich operators is studied. Then the Korovkin theorem, approximation properties and central moments of these operators are investigated. The rate of approximation of the operators is obtained by the help of modulus of continuity, functions from Lipschitz class and Peetre- K functional. Finally, some numerical examples are illustrated to show the effectiveness of the newly defined operators.
引用
收藏
页码:460 / 473
页数:14
相关论文
共 21 条
  • [1] Altomare F., 1994, De Gruyter Ser. Stud. Math, V17, P266
  • [2] Ansari KJ, 2022, COMPUT APPL MATH, V41, DOI 10.1007/s40314-022-01877-4
  • [3] Aral A, 2019, MATH COMMUN, V24, P119
  • [4] Bernstein SN., 1912, COMMUN SOC MATH KHAR, V13, P1
  • [5] On a New Construction of Generalized q-Bernstein Polynomials Based on Shape Parameter λ
    Cai, Qing-Bo
    Aslan, Resat
    [J]. SYMMETRY-BASEL, 2021, 13 (10):
  • [6] Approximation properties of λ-Bernstein operators
    Cai, Qing-Bo
    Lian, Bo-Yong
    Zhou, Guorong
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [7] Note on a New Construction of Kantorovich Form q-Bernstein Operators Related to Shape Parameter λ
    Cai, Qingbo
    Aslan, Resat
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (03): : 1479 - 1493
  • [8] A Dunkl-Gamma type operator in terms of generalization of two-variable Hermite polynomials
    Cekim, Bayram
    Aktas, Rabia
    Tasdelen, Fatma
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (03) : 727 - 735
  • [9] Approximation of functions by a new family of generalized Bernstein operators
    Chen, Xiaoyan
    Tan, Jieqing
    Liu, Zhi
    Xie, Jin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) : 244 - 261
  • [10] A NUMERICAL COMPARATIVE STUDY OF GENERALIZED BERNSTEIN-KANTOROVICH OPERATORS
    Kadak, Ugur
    Ozger, Faruk
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTING, 2021, 4 (04): : 311 - 332