Solution-processed synthesis of ZnO/CdS heterostructure photoanode for efficient photoelectrochemical water splitting

被引:5
作者
Doiphode, Vidya [1 ]
Shinde, Pratibha [1 ]
Punde, Ashvini [1 ]
Shah, Shruti [1 ]
Kale, Dhanashri [1 ]
Hase, Yogesh [1 ]
Ladhane, Somnath [1 ]
Rahane, Swati [1 ]
Waghmare, Ashish [1 ]
Bade, Bharat [1 ]
Rondiya, Sachin [2 ]
Prasad, Mohit [3 ]
Patole, Shashikant P. [4 ]
Jadkar, Sandesh [1 ]
机构
[1] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, India
[2] Indian Inst Sci, Dept Mat Engn, Bangaluru 560012, India
[3] PCCOE, Dept Appl Sci & Humanities, Pune 411004, India
[4] Khalifa Univ Sci & Technol, Dept Phys, Abu Dhabi 127788, U Arab Emirates
关键词
PEC water splitting; ZnO/CdS heterojunction; Electrodeposition; XRD; Hydrogen evolution; SENSITIZED SOLAR-CELLS; THIN-FILMS; PHOTOCATALYTIC ACTIVITY; SOLVOTHERMAL SYNTHESIS; PHYSICAL-PROPERTIES; MAGNETIC-PROPERTIES; NANOROD ARRAYS; QUANTUM DOTS; HIGH-QUALITY; ZNO;
D O I
10.1016/j.jpowsour.2024.234712
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A promising method for producing hydrogen from solar energy and transforming it into chemical fuel is photoelectrochemical (PEC) water splitting. This ecologically friendly process can also avoid energy crises. Herein, we present the electrodeposition and chemical bath deposition methods used to create ZnO-nanorod/CdS nanoparticle (ZnO/CdS) heterostructures. The structural, optical, morphological, and PEC properties are investigated. UV - Visible spectroscopy analysis reveals the ZnO/CdS films have absorption edges in the visible and ultraviolet regions. The CdS loading directly impacts the PEC result of ZnO/CdS photoanodes. The M -S plots show a positive slope, indicating the n -type nature of ZnO and CdS. Under illumination intensity of 100 mW cm - 2 , the ideal photocurrent density reaches 4.90 mA/cm 2 at a bias of 1.35 V versus reversible hydrogen electrode (vs. RHE) and is five times greater than the pristine ZnO nanorods. The maximum applied bias photon to the current conversion efficiency of 0.23 % at 0.26 V vs. RHE is observed in the pristine ZnO photoanodes. In contrast, the ZnO/CdS photoanode has achieved 3.02 % at 0.26 V vs. RHE, almost 13 times greater than the pristine ZnO photoanode. Finally, the hydrogen evolution process and the mechanism of charge transfer in ZnO/ CdS heterostructure are discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Effect of Morphology and Plasmonic on Au/ZnO Films for Efficient Photoelectrochemical Water Splitting
    Zayed, Mohamed
    Nasser, Nourhan
    Shaban, Mohamed
    Alshaikh, Hind
    Hamdy, Hany
    Ahmed, Ashour M.
    NANOMATERIALS, 2021, 11 (09)
  • [22] Anodized ZnO nanostructures for photoelectrochemical water splitting
    Huang, Mao-Chia
    Wang, TsingHai
    Wu, Bin-Jui
    Lin, Jing-Chie
    Wu, Ching-Chen
    APPLIED SURFACE SCIENCE, 2016, 360 : 442 - 450
  • [23] Solution-Processed Efficient Nanocrystal Solar Cells Based on CdTe and CdS Nanocrystals
    Liu, Songwei
    Liu, Weigeng
    Heng, Jingxuan
    Zhou, Wenfeng
    Chen, Yanru
    Wen, Shiya
    Qin, Donghuan
    Hou, Lintao
    Wang, Dan
    Xu, Hui
    COATINGS, 2018, 8 (01)
  • [24] ZnO-TiO2 Core-Shell Nanowires: A Sustainable Photoanode for Enhanced Photoelectrochemical Water Splitting
    Jeong, Kyuwon
    Deshmukh, Prashant R.
    Park, Jinse
    Sohn, Youngku
    Shin, Weon Gyu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (05): : 6518 - 6526
  • [25] Quantum dot CdS coupled Cd2SnO4 photoanode with high photoelectrochemical water splitting efficiency
    Kelkar, Sarika
    Ballal, Chinmai
    Deshpande, Aparna
    Warule, Sambhaji
    Ogale, Satishchandra
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (40) : 12426 - 12431
  • [26] Controlled growth of 3D CdS-branched ZnO nanorod arrays for efficient solar driven photoelectrochemical water splitting
    Yann, Rem
    Ngok, Sreymean
    Liu, Xianjie
    Willander, Magnus
    Chey, Chan Oeurn
    Nur, Omer
    SOLID STATE SCIENCES, 2024, 154
  • [27] Nanoporous BiVO4 nanoflake array photoanode for efficient photoelectrochemical water splitting
    Wang, Jingjing
    Liu, Canjun
    Liu, Yang
    Chen, Shu
    CRYSTENGCOMM, 2020, 22 (11): : 1914 - 1921
  • [28] Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water
    Avinash Rokade
    Sachin Rondiya
    Vidhika Sharma
    Mohit Prasad
    Habib Pathan
    Sandesh Jadkar
    Journal of Solid State Electrochemistry, 2017, 21 : 2639 - 2648
  • [29] Facile synthesis of ZnO nanopencil arrays for photoelectrochemical water splitting
    Lv, Rui
    Wang, Tuo
    Su, Fengli
    Zhang, Peng
    Li, Changjiang
    Gong, Jinlong
    NANO ENERGY, 2014, 7 : 143 - 150
  • [30] Plasmon-Enhanced Photoelectrochemical Water Splitting on Gold Nanoparticle Decorated ZnO/CdS Nanotube Arrays
    Wei, Ren-Bin
    Kuang, Pan-Yong
    Cheng, Hui
    Chen, Yi-Bo
    Long, Jian-You
    Zhang, Ming-Yi
    Liu, Zhao-Qing
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (05): : 4249 - 4257