Solution-processed synthesis of ZnO/CdS heterostructure photoanode for efficient photoelectrochemical water splitting

被引:9
作者
Doiphode, Vidya [1 ]
Shinde, Pratibha [1 ]
Punde, Ashvini [1 ]
Shah, Shruti [1 ]
Kale, Dhanashri [1 ]
Hase, Yogesh [1 ]
Ladhane, Somnath [1 ]
Rahane, Swati [1 ]
Waghmare, Ashish [1 ]
Bade, Bharat [1 ]
Rondiya, Sachin [2 ]
Prasad, Mohit [3 ]
Patole, Shashikant P. [4 ]
Jadkar, Sandesh [1 ]
机构
[1] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, India
[2] Indian Inst Sci, Dept Mat Engn, Bangaluru 560012, India
[3] PCCOE, Dept Appl Sci & Humanities, Pune 411004, India
[4] Khalifa Univ Sci & Technol, Dept Phys, Abu Dhabi 127788, U Arab Emirates
关键词
PEC water splitting; ZnO/CdS heterojunction; Electrodeposition; XRD; Hydrogen evolution; SENSITIZED SOLAR-CELLS; THIN-FILMS; PHOTOCATALYTIC ACTIVITY; SOLVOTHERMAL SYNTHESIS; PHYSICAL-PROPERTIES; MAGNETIC-PROPERTIES; NANOROD ARRAYS; QUANTUM DOTS; HIGH-QUALITY; ZNO;
D O I
10.1016/j.jpowsour.2024.234712
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A promising method for producing hydrogen from solar energy and transforming it into chemical fuel is photoelectrochemical (PEC) water splitting. This ecologically friendly process can also avoid energy crises. Herein, we present the electrodeposition and chemical bath deposition methods used to create ZnO-nanorod/CdS nanoparticle (ZnO/CdS) heterostructures. The structural, optical, morphological, and PEC properties are investigated. UV - Visible spectroscopy analysis reveals the ZnO/CdS films have absorption edges in the visible and ultraviolet regions. The CdS loading directly impacts the PEC result of ZnO/CdS photoanodes. The M -S plots show a positive slope, indicating the n -type nature of ZnO and CdS. Under illumination intensity of 100 mW cm - 2 , the ideal photocurrent density reaches 4.90 mA/cm 2 at a bias of 1.35 V versus reversible hydrogen electrode (vs. RHE) and is five times greater than the pristine ZnO nanorods. The maximum applied bias photon to the current conversion efficiency of 0.23 % at 0.26 V vs. RHE is observed in the pristine ZnO photoanodes. In contrast, the ZnO/CdS photoanode has achieved 3.02 % at 0.26 V vs. RHE, almost 13 times greater than the pristine ZnO photoanode. Finally, the hydrogen evolution process and the mechanism of charge transfer in ZnO/ CdS heterostructure are discussed.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Oxygen vacancy mediated TiO2-x-MoS2/FTO heterostructure as an efficient photoanode for photoelectrochemical water splitting [J].
Rezaei, Mahdieh ;
Ensafi, Ali A. ;
Heydari-Bafrooei, Esmaeil .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2025, 146 :589-602
[22]   Photoelectrochemical water splitting properties of CdS/TiO2 nanofibers-based photoanode [J].
Van Nghia Nguyen ;
Minh Thuy Doan ;
Minh Vuong Nguyen .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (01) :926-932
[23]   Effect of Morphology and Plasmonic on Au/ZnO Films for Efficient Photoelectrochemical Water Splitting [J].
Zayed, Mohamed ;
Nasser, Nourhan ;
Shaban, Mohamed ;
Alshaikh, Hind ;
Hamdy, Hany ;
Ahmed, Ashour M. .
NANOMATERIALS, 2021, 11 (09)
[24]   Anodized ZnO nanostructures for photoelectrochemical water splitting [J].
Huang, Mao-Chia ;
Wang, TsingHai ;
Wu, Bin-Jui ;
Lin, Jing-Chie ;
Wu, Ching-Chen .
APPLIED SURFACE SCIENCE, 2016, 360 :442-450
[25]   Solution-Processed Efficient Nanocrystal Solar Cells Based on CdTe and CdS Nanocrystals [J].
Liu, Songwei ;
Liu, Weigeng ;
Heng, Jingxuan ;
Zhou, Wenfeng ;
Chen, Yanru ;
Wen, Shiya ;
Qin, Donghuan ;
Hou, Lintao ;
Wang, Dan ;
Xu, Hui .
COATINGS, 2018, 8 (01)
[26]   ZnO-TiO2 Core-Shell Nanowires: A Sustainable Photoanode for Enhanced Photoelectrochemical Water Splitting [J].
Jeong, Kyuwon ;
Deshmukh, Prashant R. ;
Park, Jinse ;
Sohn, Youngku ;
Shin, Weon Gyu .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (05) :6518-6526
[27]   Quantum dot CdS coupled Cd2SnO4 photoanode with high photoelectrochemical water splitting efficiency [J].
Kelkar, Sarika ;
Ballal, Chinmai ;
Deshpande, Aparna ;
Warule, Sambhaji ;
Ogale, Satishchandra .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (40) :12426-12431
[28]   Controlled growth of 3D CdS-branched ZnO nanorod arrays for efficient solar driven photoelectrochemical water splitting [J].
Yann, Rem ;
Ngok, Sreymean ;
Liu, Xianjie ;
Willander, Magnus ;
Chey, Chan Oeurn ;
Nur, Omer .
SOLID STATE SCIENCES, 2024, 154
[29]   Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water [J].
Avinash Rokade ;
Sachin Rondiya ;
Vidhika Sharma ;
Mohit Prasad ;
Habib Pathan ;
Sandesh Jadkar .
Journal of Solid State Electrochemistry, 2017, 21 :2639-2648
[30]   Nanoporous BiVO4 nanoflake array photoanode for efficient photoelectrochemical water splitting [J].
Wang, Jingjing ;
Liu, Canjun ;
Liu, Yang ;
Chen, Shu .
CRYSTENGCOMM, 2020, 22 (11) :1914-1921