Effect of intra-year Landsat scene availability in land cover land use classification in the conterminous United States using deep neural networks

被引:0
|
作者
Mountrakis, Giorgos [1 ]
Heydari, Shahriar S. [1 ]
机构
[1] SUNY Syracuse, Dept Environm Resources Engn, Coll Environm Sci & Forestry, 1 Forestry Dr, Syracuse, NY 13210 USA
关键词
Deep learning; Time; -series; Classification; Landsat; United States; CROP;
D O I
10.1016/j.isprsjprs.2024.04.027
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The Landsat archive having consistent revisit times, near global extent and extensive multi-decadal temporal coverage offers a unique opportunity for land cover land use product generation. Along with this vast volume of freely available data, new classification methods based on deep learning have improved modeling capabilities. This manuscript investigates the effect of intra-annual Landsat scene availability in the accuracy of land cover land use classification in the conterminous United States. More specifically, we seek to quantify the effect of: i) increased monthly scene availability, and ii) specific months that may result in higher classification accuracy across different classes. Identifying specific months with comparable classification accuracy to the entire time series could offer significant computational gains for large-scale mapping. Our experiment incorporated deep learning classifiers and a wide range of reference data across the continental United States. Results were contrasted between five large U.S. climatic regions to further differentiate this intra-annual effect. Our findings indicate that the total number of months can have a highly variable effect in the classification accuracy ranging from minor (a few percentage points in terms of class F1 accuracy) to extremely beneficial (approaching 50% F1 improvement moving from four to twelve month observations). The benefit of increased month observations varied among climatic regions and classes: when all climate regions were combined, the grass/shrub and cultivated classes improved their F1 accuracy up to 30%, while the water class saw the least improvement of about 5%, partially due to its limited room for improvement. The effect of specific month combinations was also examined, where the total number of months was kept constant and the included months varied. The difference between the best month combination and the median combination value was estimated to be as high as about 30% for the four monthly observations scenario and the grass/shrub class. Further validation of the month selection importance comes from an example implementation scenario where F1 improvements can be as high as 10%. Our work demonstrated that month selection may offer such benefits that in some classes and climatic regions this time selection optimization is an inevitable choice due to large accuracy improvements. Also, the potential data reduction with targeted month selection would be particularly appealing to large-scale classification tasks. Due to the large extent of the climatic regions further studies are needed to quantify a more localized effect along with explanation of potential drivers.
引用
收藏
页码:164 / 180
页数:17
相关论文
共 50 条
  • [31] Land use classification from multitemporal Landsat imagery using the Yearly Land Cover Dynamics (YLCD) method
    Julien, Y.
    Sobrino, J. A.
    Jimenez-Munoz, J-C
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2011, 13 (05) : 711 - 720
  • [32] Land use/land cover classification of the vicinity of Lake Chad using NigeriaSat-1 and Landsat data
    Babamaaji, Rakiya A.
    Lee, Jejung
    ENVIRONMENTAL EARTH SCIENCES, 2014, 71 (10) : 4309 - 4317
  • [33] Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series
    Amini, Saeid
    Saber, Mohsen
    Rabiei-Dastjerdi, Hamidreza
    Homayouni, Saeid
    REMOTE SENSING, 2022, 14 (11)
  • [34] Land use/land cover classification using time series Landsat 8 images in a heavily urbanized area
    Deng, Ziwei
    Zhu, Xiang
    He, Qingyun
    Tang, Lisha
    ADVANCES IN SPACE RESEARCH, 2019, 63 (07) : 2144 - 2154
  • [35] Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images
    Tejasree, Ganji
    Agilandeeswari, L.
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2024, 27 (01): : 52 - 68
  • [36] Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images
    Tejasree, Ganji
    Agilandeeswari, L.
    Egyptian Journal of Remote Sensing and Space Science, 2024, 27 (01): : 52 - 68
  • [37] Land use land cover classification using Sentinel imagery based on deep learning models
    Sawant, Suraj
    Ghosh, Jayanta Kumar
    JOURNAL OF EARTH SYSTEM SCIENCE, 2024, 133 (02)
  • [38] Estimation of Evapotranspiration Across the Conterminous United States Using a Regression With Climate and Land-Cover Data
    Sanford, Ward E.
    Selnick, David L.
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2013, 49 (01): : 217 - 230
  • [39] Land use and land cover classification for change detection studies using convolutional neural network
    Pushpalatha, V.
    Mallikarjuna, P.B.
    Mahendra, H.N.
    Rama Subramoniam, S.
    Mallikarjunaswamy, S.
    Applied Computing and Geosciences, 25
  • [40] Land use and land cover classification for change detection studies using convolutional neural network
    Pushpalatha, V.
    Mallikarjuna, P. B.
    Mahendra, H. N.
    Subramoniam, S. Rama
    Mallikarjunaswamy, S.
    APPLIED COMPUTING AND GEOSCIENCES, 2025, 25