An Empirical Analysis of Data Reduction Techniques for k-NN Classification

被引:0
|
作者
Eleftheriadis, Stylianos [1 ]
Evangelidis, Georgios [1 ]
Ougiaroglou, Stefanos [2 ]
机构
[1] Univ Macedonia, Sch Informat Sci, Dept Appl Informat, Thessaloniki 54636, Greece
[2] Int Hellen Univ, Sch Engn, Dept Informat & Elect Engn, Thessaloniki 57400, Greece
来源
ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT IV, AIAI 2024 | 2024年 / 714卷
关键词
prototype generation; prototype selection; data reduction techniques; data mining; data cleaning; PROTOTYPE SELECTION; NEAREST;
D O I
10.1007/978-3-031-63223-5_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study explores Data Reduction Techniques (DRTs) in the realm of lazy classification algorithms like k-NN, focusing on Prototype Selection (PS) and Prototype Generation (PG) methods. The research provides an in-depth examination of these methodologies, categorizing DRTs into two primary categories: PS and PG, and further dividing them into three sub-categories: condensation methods, edition methods, and hybrid methods. An experimental study compares a total of 20 new and state-of-the-art DRTs across 20 datasets. The objective is to draw performance conclusions within both the primary and subcategories, offering valuable insights into how these techniques enhance the effectiveness and robustness of the k-NN classifier. The paper provides a comprehensive overview of DRTs, clarifying their strategies and relative performances.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 50 条
  • [1] K-NN DATA CLASSIFICATION TECHNIQUE USING SEMANTIC SEARCH ON ENCRYPTED RELATIONAL DATA BASE
    Uttarwar, Nikita
    Pradhan, M. A.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2016,
  • [2] Using Dominant Sets for k-NN Prototype Selection
    Vascon, Sebastiano
    Cristani, Marco
    Pelillo, Marcello
    Murino, Vittorio
    IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 131 - 140
  • [3] A Simple Noise-Tolerant Abstraction Algorithm for Fast k-NN Classification
    Ougiaroglou, Stefanos
    Evangelidis, Georgios
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, 2012, 7209 : 210 - 221
  • [4] K-NN: ESTIMATING AN ADEQUATE VALUE FOR PARAMETER K
    Borsato, Bruno
    Plastino, Alexandre
    Merschmann, Luiz
    ICEIS 2008: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL AIDSS: ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS, 2008, : 459 - +
  • [5] A MapReduce Based k-NN Joins Probabilistic Classifier
    Chatzigeorgakidis, Georgios
    Karagiorgou, Sophia
    Athanasiou, Spiros
    Skiadopoulos, Spiros
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 952 - 957
  • [6] Scalable k-NN graph construction for visual descriptors
    Wang, Jing
    Wang, Jingdong
    Zeng, Gang
    Tu, Zhuowen
    Gan, Rui
    Li, Shipeng
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1106 - 1113
  • [7] Feature Selection by Using DE Algorithm and k-NN Classifier
    Senel, Fatih Ahmet
    Yuksel, Asim Sinan
    Yigit, Tuncay
    ARTIFICIAL INTELLIGENCE AND APPLIED MATHEMATICS IN ENGINEERING PROBLEMS, 2020, 43 : 886 - 893
  • [8] An Improved K-NN Algorithm Through Class Discernibility and Cohesiveness
    Sarkar, Rajesh Prasad
    Maiti, Ananjan
    RECENT DEVELOPMENTS IN MACHINE LEARNING AND DATA ANALYTICS, 2019, 740 : 445 - 454
  • [9] Handling Imbalanced Dataset Using SVM and k-NN Approach
    Wah, Yap Bee
    Abd Rahman, Hezlin Aryani
    He, Haibo
    Bulgiba, Awang
    ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 1750
  • [10] Knowledge Discovery in Medical Systems Using Differential Diagnosis, LAMSTAR, and k-NN
    Isola, Rahul
    Carvalho, Rebeck
    Tripathy, Amiya Kumar
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2012, 16 (06): : 1287 - 1295