Classical limits of Hilbert bimodules as symplectic dual pairs

被引:0
作者
Feintzeig, Benjamin H. [1 ]
Steeger, Jer [2 ]
机构
[1] Univ Washington, Dept Philosophy, Seattle, WA 98195 USA
[2] Univ Bristol, Dept Philosophy, Bristol BS6 6JL, England
基金
美国国家科学基金会;
关键词
C*-algebras; Poisson algebras; strict deformation quantization; C-ASTERISK-ALGEBRAS; DEFORMATION QUANTIZATION; INDUCED REPRESENTATIONS; MORITA EQUIVALENCE; POISSON; STRICT; SPACE;
D O I
10.1142/S0129055X24500260
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hilbert bimodules are morphisms between C*-algebraic models of quantum systems, while symplectic dual pairs are morphisms between Poisson geometric models of classical systems. Both of these morphisms preserve representation-theoretic structures of the relevant types of models. Previously, it has been shown that one can functorially associate certain symplectic dual pairs to Hilbert bimodules through strict deformation quantization. We show that, in the inverse direction, strict deformation quantization also allows one to functorially take the classical limit of a Hilbert bimodule to reconstruct a symplectic dual pair.
引用
收藏
页数:47
相关论文
共 45 条
[1]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[2]   TOEPLITZ-OPERATORS AND QUANTUM-MECHANICS [J].
BERGER, CA ;
COBURN, LA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 68 (03) :273-299
[3]   Deformation Quantization for Actions of Kahlerian Lie Groups [J].
Bieliavsky, Pierre ;
Gayral, Victor .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 236 (1115) :1-+
[4]   Field-theoretic Weyl quantization as a strict and continuous deformation quantization [J].
Binz, E ;
Honegger, R ;
Rieckers, A .
ANNALES HENRI POINCARE, 2004, 5 (02) :327-346
[5]   PICARD GROUPS IN POISSON GEOMETRY [J].
Bursztyn, Henrique ;
Weinstein, Alan .
MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (01) :39-66
[6]   DEFORMATION ESTIMATES FOR THE BEREZIN-TOEPLITZ QUANTIZATION [J].
COBURN, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :415-424
[7]  
Crainic M, 2004, J DIFFER GEOM, V66, P71, DOI 10.4310/jdg/1090415030
[8]  
Dixmier J., 1977, C*-algebras
[9]  
Feintzeig B.H., 2023, The classical-quantum correspondence
[10]   Quantization as a categorical equivalence [J].
Feintzeig, Benjamin H. .
LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (01)