Ultra-high strength of additively manufactured CoCrNi medium entropy alloy with high-fraction TiC

被引:0
|
作者
Ma, Jun [1 ,2 ]
Zhang, Zhi-jia [1 ]
Wei, Ming [2 ]
Jin, Feng [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[2] Northwest Inst Nonferrous Met Res, State Key Lab Porous Met Mat, Xian 710016, Peoples R China
关键词
CoCrNi-TiC; Additive manufacturing; Metals and alloys; Microstructure; Strength; COMPOSITE; MECHANISM;
D O I
10.1016/j.matlet.2024.136945
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the novel CoCrNi composite with as high fraction as 5 wt% TiC reinforcements were additively manufactured (AMed) by laser powder bed fusion (LPBF) of blended powders of nano-C particles, spherical micro-Ti powders and spherical CoCrNi powders, instead of blended powders of nano-TiC and CoCrNi powders. This method resulted in fully melting of C and Ti elements during laser fusion and subsequent precipitation of nano-TiC during solidification. The agglomeration of nano-TiC in the matrix is reduced by this method, resulting in an 1800 MPa ultrahigh strength, simultaneously maintaining a considerable elongation of 12 %. Rise in the fractions of TiC from 0 to 5 wt% reduces intensity of the texture and grain size in the matrix and convert the strong (101) texture to relative weak (100) texture along building direction (BD).
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Additively manufactured CrMnFeCoNi/AlCoCrFeNiTi0.5 laminated high-entropy alloy with enhanced strength-plasticity synergy
    Guan, S.
    Wan, D.
    Solberg, K.
    Berto, F.
    Welo, T.
    Yue, T. M.
    Chan, K. C.
    SCRIPTA MATERIALIA, 2020, 183 : 133 - 138
  • [32] Achieving exceptional high-temperature strength and oxidation resistance in an additively manufactured refractory high-entropy alloy via strategic elemental substitutions
    Su, Bing
    Zhu, Yanyan
    Cheng, Fang
    Zhang, Yansong
    Li, Zhuo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [33] Heavily twinned CoCrNi medium-entropy alloy with superior strength and crack resistance
    Feng, Xiaobin
    Yang, Haokun
    Fan, Rong
    Zhang, Wenqiang
    Meng, Fanling
    Gan, Bin
    Lu, Yang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 788
  • [34] Tribo-corrosion response of additively manufactured high-entropy alloy
    Shittu, Jibril
    Sadeghilaridjani, Maryam
    Pole, Mayur
    Muskeri, Saideep
    Ren, Jie
    Liu, Yanfang
    Tahoun, Ismael
    Arora, Harpreet
    Chen, Wen
    Dahotre, Narendra
    Mukherjee, Sundeep
    NPJ MATERIALS DEGRADATION, 2021, 5 (01)
  • [35] A powder-metallurgy-based fabrication route towards achieving high tensile strength with ultra-high ductility in high-entropy alloy
    Asghari-Rad, Peyman
    Sathiyamoorthi, Praveen
    Nhung Thi-Cam Nguyen
    Zargaran, Alireza
    Kim, Taek Soo
    Kim, Hyoung Seop
    SCRIPTA MATERIALIA, 2021, 190 : 69 - 74
  • [36] Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder
    Wang, Pan
    Huang, Pengfei
    Ng, Fern Lan
    Sin, Wai Jack
    Lu, Shenglu
    Nai, Mui Ling Sharon
    Dong, ZhiLi
    Wei, Jun
    MATERIALS & DESIGN, 2019, 168
  • [37] Hydrogen embrittlement of additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy
    Wan, Di
    Guan, Shuai
    Wang, Dong
    Lu, Xu
    Ma, Jun
    CORROSION SCIENCE, 2022, 195
  • [38] Optimization of tensile properties and anisotropy in a cryogenically treated laser additively manufactured high entropy alloy
    Tian, Yuan
    Lu, Yunzhuo
    Narayan, R. Lakshmi
    INTERNATIONAL JOURNAL OF PLASTICITY, 2024, 178
  • [39] Ultra-High Strength in FCC plus BCC High-Entropy Alloy via Different Gradual Morphology
    Ding, Ziheng
    Ding, Chaogang
    Yang, Zhiqin
    Zhang, Hao
    Wang, Fanghui
    Li, Hushan
    Xu, Jie
    Shan, Debin
    Guo, Bin
    MATERIALS, 2024, 17 (18)
  • [40] Ultra-high strength and ductility of eutectic high-entropy alloy with duplex heterostructure at room and cryogenic temperatures
    Liu, Xiangkui
    Liu, Jingying
    Zhou, Chenglong
    Dong, Weixia
    Zhang, Xuecong
    Wang, Qianye
    Xu, Huiqing
    An, Xulong
    Wang, Dandan
    Wei, Wei
    Jiang, Zhenfei
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 221 : 187 - 193